已知任意k∈R,直線y-kx-1=0與橢圓+=1恒有公共點,則實數(shù)m的取值范圍是(  )
A.(0,1)B.(0,5)
C.[1,5)∪(5,+∞)D.[1,5)
C
直線y=kx+1過定點(0,1),只要(0,1)在橢圓+=1上或其內(nèi)部即可.從而m≥1,又因為橢圓+=1中m≠5,所以m的取值范圍是[1,5)∪(5,
+∞).
【誤區(qū)警示】本題易誤選D,根本原因是誤認為橢圓的焦點在x軸上,得1≤m<5,而忽視其焦點可能在y軸上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦距為2,則m的取值是 (  )
A.7B.5C.5或7D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓+=1的焦點為F1、F2,點P在橢圓上.若|PF1|=4,則|PF2|=   ,∠F1PF2的大小為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點P是圓x2y2=4上任意一點,由點Px軸作垂線PP0,垂足為P0,且.
(1)求點M的軌跡C的方程;
(2)設(shè)直線lykxm(m≠0)與(1)中的軌跡C交于不同的兩點A,B.
若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程.
(2)當(dāng)△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓方程為x2+=1,過點M(0,1)的直線l交橢圓于A,B兩點,O是坐標(biāo)原點,點P滿足=(+),當(dāng)l繞點M旋轉(zhuǎn)時,動點P的軌跡方程為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知點B是橢圓+=1(a>b>0)的短軸位于x軸下方的端點,過B作斜率為1的直線交橢圓于點M,點P在y軸上,且PM∥x軸,·=9,若點P的坐標(biāo)為(0,t),則t的取值范圍是(  )
A.0<t<3B.0<t≤3
C.0<t<D.0<t≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點,焦點F1,F(xiàn)2在x軸上,離心率為.過F1的直線交橢圓C于A,B兩點,且△ABF2的周長為8.過定點M(0,3)的直線l1與橢圓C交于G,H兩點(點G在點M,H之間).
(1)求橢圓C的方程;
(2)設(shè)直線l1的斜率k>0,在x軸上是否存在點P(m,0),使得以PG,PH為鄰邊的平行四邊形為菱形?如果存在,求出m的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點P在橢圓上運動,Q、R分別在兩圓上運動,則的最小值為          

查看答案和解析>>

同步練習(xí)冊答案