(本小題滿分12分)
已知橢圓C的中心在原點(diǎn)、焦點(diǎn)在軸上,橢圓C上的點(diǎn)到焦點(diǎn)的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線橢圓交于不同的兩點(diǎn)M,N(M,N不是左、右頂點(diǎn)),且以MN為直徑的圓經(jīng)過(guò)橢圓的右頂點(diǎn)A.求證:直線過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(Ⅰ)  (Ⅱ)


(Ⅱ)由方程組消去y
由題意得整理得
設(shè),則,.…6分
由已知,,且橢圓的右頂點(diǎn)為,……8分
,

整理得:,解得:,均滿足①.…10分
當(dāng)時(shí),直線l的方程為,過(guò)定點(diǎn),舍去;
當(dāng)時(shí),直線l的方程為,過(guò)定點(diǎn),
故直線l過(guò)定點(diǎn),且定點(diǎn)的坐標(biāo)為.………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓其相應(yīng)于焦點(diǎn)的準(zhǔn)線方程為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知過(guò)點(diǎn)傾斜角為的直線交橢圓兩點(diǎn),求證:
;
(Ⅲ)過(guò)點(diǎn)作兩條互相垂直的直線分別交橢圓,求 的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)分別為橢圓的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且為它的右準(zhǔn)線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線分別與橢圓相交于異于的點(diǎn),證明點(diǎn)在以為直徑的圓內(nèi).
(此題不要求在答題卡上畫(huà)圖)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知焦點(diǎn)在軸上,中心在坐標(biāo)原點(diǎn)的橢圓C的離心率為,且過(guò)點(diǎn)
(1)求橢圓C的方程;
(2)直線分別切橢圓C與圓(其中)于A.B兩點(diǎn),求|AB|的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓C,經(jīng)過(guò)橢圓的右焦點(diǎn)F且斜率為的直線l交橢圓C于A、B兩點(diǎn),M為線段AB的中點(diǎn),設(shè)O為橢圓的中心,射線OM交橢圓于N點(diǎn).
(I)是否存在,使對(duì)任意,總有成立?若存在,求出所有的值;
(II)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率.直線:與橢圓C相交于兩點(diǎn), 且.
(1)求橢圓C的方程;
(2)點(diǎn)P(,0),A、B為橢圓C上的動(dòng)點(diǎn),當(dāng)時(shí),求證:直線AB恒過(guò)一個(gè)定點(diǎn).并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的上焦點(diǎn)為,左、右頂點(diǎn)分別為,下頂點(diǎn)為,直線與直線交于點(diǎn),若,則橢圓的離心率為_(kāi)__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知m(x+y+2y+1)=(x-2y+3)表示的曲線為一個(gè)橢圓,則m的取值范圍是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在等腰梯形ABCD中,AB//CD,且AB=2AD,設(shè),以A,B為焦點(diǎn)且過(guò)點(diǎn)D的雙曲線的離心率為,以C,D為焦點(diǎn)且過(guò)點(diǎn)A的橢圓的離心率為,則                              (   )
                 
A.隨著角度的增大,增大,為定值
B.隨著角度的增大,減小,為定值
C.隨著角度的增大,增大,也增大
C.隨著角度的增大,減小,也減小

查看答案和解析>>

同步練習(xí)冊(cè)答案