在中,角所對的邊分別為,已知,
(Ⅰ)求的大小;
(Ⅱ)若,求的取值范圍.
①.. ②. .
解析試題分析:①運(yùn)用正弦定理把邊轉(zhuǎn)化成角再求角,②方法一:利用第一問的結(jié)論 及 的條件,只要找到 的取值范圍即可,利用余弦定理建立 的關(guān)系式,再求 的取值范圍,方法二,利用正弦定理建立與角 的三角函數(shù)關(guān)系式,再利用 減少變元,求范圍.
試題解析:(Ⅰ)由條件結(jié)合正弦定理得,
從而,
∵,∴ 5分
(Ⅱ)法一:由已知:,
由余弦定理得:
(當(dāng)且僅當(dāng)時(shí)等號成立)
∴(,又,
∴,
從而的取值范圍是 12分
法二:由正弦定理得:
∴,,
∵
∴,即(當(dāng)且僅當(dāng)時(shí),等號成立)
從而的取值范圍是 12分
考點(diǎn):1 正弦定理;2 余弦定理;3 兩角和公式;4 均值不等式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中),、是函數(shù)的兩個(gè)不同的零點(diǎn),且的最小值為.
(1)求的值;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).
①;
②;
③;
④;
⑤.
(1)從上述五個(gè)式子中選擇一個(gè),求出常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為一個(gè)三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=sin2ωx+sinωxcosωx(ω>0)的最小正周期為π,
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在[0,]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面直角坐標(biāo)系上的三點(diǎn),,(),為坐標(biāo)原點(diǎn),向量與向量共線.
(1)求的值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,傾斜角為的直線與單位圓在第一象限的部分交于點(diǎn),單位圓與坐標(biāo)軸交于點(diǎn),點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn),設(shè)
(1)用角表示點(diǎn)、點(diǎn)的坐標(biāo);
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且.
(Ⅰ)求sinA的值;
(Ⅱ)若,b=5,求向量在方向上的投影.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com