A. | $\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{3}$=1 | B. | y2-$\frac{{x}^{2}}{4}$=1 | C. | $\frac{{y}^{2}}{4}$-x2=1 | D. | $\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{2}$=1 |
分析 將雙曲線轉(zhuǎn)化成標(biāo)準(zhǔn)方程,結(jié)合P到雙曲線C的右焦點F2(c,0)的距離與到直線y=-2的距離之和的最小值為3,可得FF2=3,從而可求c的值,即可求得b的值,寫出雙曲線方程.
解答 解:拋物線y2=8x的焦點F(2,0),
∵點P到雙曲線$\frac{{y}^{2}}{4^{2}}-\frac{{x}^{2}}{^{2}}=1$的上焦點F1(0,c)的距離與到直線x=-2的距離之和的最小值為3,
∴FF1=3,
∴c2+4=9,c=$\sqrt{5}$,
∵4b2+b2=c2,
∴b2=1,
∴雙曲線的方程為$\frac{{y}^{2}}{4}-{x}^{2}=1$.
故答案選:C.
點評 本題考查拋物線的方程和性質(zhì)、求雙曲線的方程,考查點到直線的距離公式的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S=1+2+3+…100,P=1+2+3+…100 | B. | S=1+2+3+…99,P=1+2+3+…100 | ||
C. | S=1+2+3+…99,P=1+2+3+…99 | D. | S=1+2+3+…100,P=1+2+3+…99 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1m | B. | 6m | C. | $2\sqrt{5}$m | D. | 4m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\sqrt{5}-1$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com