如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=,AF∶FB∶BE=4∶2∶1,若CE與圓相切,求線段CE的長(zhǎng).

試題分析:利用相交弦定理可得到的等量關(guān)系,并結(jié)合已知條件可計(jì)算出,利用切割線定理可得到的等量關(guān)系,并結(jié)合前面所得可得結(jié)果.
試題解析:由相交弦定理得,由于,可解得,所以.由切割線定理得,即.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點(diǎn)C,BD∥XY,AC、BD相交于E.

(1)求證:△ABE≌△ACD; 
(2)若AB=6 cm,BC=4 cm,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,以原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2).設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P在橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn),滿足|PF1|=6-|PF2|,且橢圓C的離心率為
5
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)Q(1,0)且不與x軸垂直的直線l與橢圓C相交于兩個(gè)不同點(diǎn)M、N,在x軸上是否存在定點(diǎn)G,使得
GM
GN
為定值.若存在,求出所有滿足這種條件的點(diǎn)G的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)K(-1,0)為直線l與拋物線C準(zhǔn)線的交點(diǎn).直線l與拋物線C相交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D.
(1)求拋物線C的方程;
(2)設(shè)
FA
FB
=
8
9
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是( 。 
A.若兩個(gè)角互補(bǔ),則這兩個(gè)角是鄰補(bǔ)角;
B.若兩個(gè)角相等,則這兩個(gè)角是對(duì)頂角
C.若兩個(gè)角是對(duì)頂角,則這兩個(gè)角相等;
D.以上判斷都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是圓的內(nèi)接三角形,的平分線交圓于點(diǎn),交于點(diǎn),過點(diǎn)的圓的切線與的延長(zhǎng)線交于點(diǎn).在上述條件下,給出下列四個(gè)結(jié)論:

則所有正確結(jié)論的序號(hào)是
A.①②B.③④C.①②③D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知在?ABCD中,O1,O2,O3為對(duì)角線BD上三點(diǎn),且BO1=O1O2=O2O3=O3D,連接AO1并延長(zhǎng)交BC于點(diǎn)E,連接EO3并延長(zhǎng)交AD于F,則AD∶FD等于(  )
A.19∶2B.9∶1
C.8∶1D.7∶1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,C是半圓O上異于A,B的點(diǎn),CD⊥AB,垂足為D,已知AD=2,CB=4,則CD=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案