【題目】已知,函數(shù),記.

(1)求函數(shù)的定義域及其零點(diǎn);

(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實(shí)數(shù)的取值范圍.

【答案】(1)定義域?yàn)?/span>,零點(diǎn)為0.(2)見(jiàn)解析

【解析】試題分析:(1)根據(jù)的解析式,即可求出的定義域,令,由對(duì)數(shù)函數(shù)的性質(zhì)可解得的值,通過(guò)檢驗(yàn)即可得到零點(diǎn);(2)方程可化為,設(shè),構(gòu)造函數(shù),可得單調(diào)性與最值,進(jìn)而可得的取值范圍.

試題解析:(1),

所以,解得,所以的定義域?yàn)?/span>.

,則,

方程變?yōu)?/span>,即

解得,

經(jīng)檢驗(yàn)是方程的增根,所以方程的解為,所以的零點(diǎn)為0.

(2)方程可化為

所以,

設(shè),則函數(shù)在區(qū)間上是減函數(shù),

當(dāng)時(shí),此時(shí), ,所以,

①若,則,方程有解;

②若,則,方程有解.

綜上所述,當(dāng)時(shí), 的取值范圍是;當(dāng)時(shí), 的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .

(1)試寫出直線的直角坐標(biāo)方程和曲線的普通方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列{an}是等差數(shù)列,首項(xiàng)a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項(xiàng)和Sn>0成立的最大自然數(shù)n是(
A.4005
B.4006
C.4007
D.4008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是:( )

A. 命題“若,則”的否命題為“若,則

B. 命題“存在,使得”的否定是:“任意,都有

C. 若命題“非”與命題“”都是真命題,那么命題一定是真命題

D. 命題“若,則”的逆命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:“ =1是焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程”,命題q:“不等式組 所表示的區(qū)域是三角形”.若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)在等差數(shù)列中,已知,前項(xiàng)和為,且,求當(dāng)取何值時(shí), 取得最大值,并求出它的最大值;

(2)已知數(shù)列的通項(xiàng)公式是,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為,兩個(gè)焦點(diǎn)分別為, ,四邊形的面積是四邊形的面積的2倍.

(1)求橢圓的方程;

(2)過(guò)橢圓的右焦點(diǎn)且垂直于軸的直線交橢圓兩點(diǎn), 是橢圓上位于直線兩側(cè)的兩點(diǎn).若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(Ⅰ)求角A的大小;
(Ⅱ)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案