(本小題12分)已知命題,,若非是非的充分不必要條件,求的取值范圍。
解析試題分析:利用等價轉(zhuǎn)化思想可知,非p是非q的充分不必要條件,則q 是p的充分不必要條件,因此只要求解p,q命題表示的集合即可。且q的集合包含于集合p中,那么可知,結(jié)合數(shù)軸法得到滿足題意的a的不等式組,進(jìn)而求解。
解:,令A(yù)=[-2,10];
,令B=[1-a,1+a]
非是非的充分不必要條件,即是的必要不充分條件,
,
解得:
考點(diǎn):本題以集合的定義與子集的性質(zhì)為載體,考查了必要條件、充分條件與充要條件的判斷,屬于基礎(chǔ)題.
點(diǎn)評:解決該試題的關(guān)鍵是根據(jù)一元二次方程的解法,分別求出集合A和B,若非p是非q的充分不必要條件,則q 是p的充分不必要條件,從而求出a的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 已知p:,q:x2-2x+1-m2≤0(m>0),且┐p是┐q的必要而不充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
命題P:函數(shù)內(nèi)單調(diào)遞減;命題Q:曲線軸交于不同的兩點(diǎn).
如果“P\/Q”為真且“P/\Q”為假,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
命題p:關(guān)于x的不等式x2+2ax+4>0,對一切x∈R恒成立,q:函數(shù)f(x)=(3-2a)x是增函數(shù),若p或q為真,p且q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知實數(shù),命題:在區(qū)間上為減函數(shù);命題:方程在有解。若為真,為假,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com