【題目】下列命題中不正確的是( )
A. 平面∥平面,一條直線平行于平面,則一定平行于平面
B. 平面∥平面,則內(nèi)的任意一條直線都平行于平面
C. 一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行
D. 分別在兩個平行平面內(nèi)的兩條直線只能是平行直線或異面直線
科目:高中數(shù)學 來源: 題型:
【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=+k(+lnx)(k為常數(shù)).
(1)當k=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當k≥0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高三年級從甲(文)乙(理)兩個年級組各選出7名學生參加高校自主招生數(shù)學選拔考試,他們?nèi)〉玫某煽儯M分:100分)的莖葉圖如圖所示,其中甲組學生的平均分是85分,乙組學生成績的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績在90分以上的學生中隨機取兩名學生,求甲組至少有一名學生的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】半徑為1的圓O內(nèi)切于正方形ABCD,正六邊形EFGHPR內(nèi)接于圓O,當EFGHPR繞圓心O旋轉時,的取值范圍是( 。
A.[1﹣ , 1+]
B.[﹣1- , ﹣1+]
C.[﹣ , +]
D.[-﹣ , -+]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的外接圓半徑,角A、B、C的對邊分別是a、b、c,且.
(I)求角B和邊長b;
(II)求面積的最大值及取得最大值時的a、c的值,并判斷此時三角形的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應優(yōu)惠,標準如下:
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費比例 | 1 |
該公司從注冊的會員中,隨機抽取了位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
頻數(shù) |
假設汽車美容一次,公司成本為元.根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(3)該公司從至少消費兩次的顧客中按消費次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀念品.求抽出的2人中恰有1人消費兩次的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,圓C的極坐標方程為ρ=4cos θ.
(1)求出圓C的直角坐標方程;
(2)已知圓C與x軸相交于A,B兩點,直線l:y=2x關于點M(0,m)(m≠0)對稱的直線為l′.若直線l′上存在點P使得∠APB=90°,求實數(shù)m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com