A. | (-1,1) | B. | (1,+∞) | C. | (1,+∞)∪(-∞,-1) | D. | (-∞,-1) |
分析 分類討論:當(dāng)a≥0時,容易判斷出不符合題意;當(dāng)a<0時,求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和極值之間的關(guān)系轉(zhuǎn)化為求極小值f($\frac{1}{3a}$)>0,求得a的取值范圍.
解答 解:∵f(x)=2ax3-x2+$\frac{1}{27}$,
∴f′(x)=6ax2-2x=2x(3ax-1),f(0)=$\frac{1}{27}$;
①當(dāng)a=0時,f(x)=-x2+$\frac{1}{27}$,有兩個零點,不成立;
②當(dāng)a>0時,f(x)=2ax3-x2+$\frac{1}{27}$,令f′(x)=2x(3ax-1),解得:x=0,x=$\frac{1}{3a}$,
x | (-∞,0) | 0 | (0,$\frac{1}{3a}$) | $\frac{1}{3a}$ | ($\frac{1}{3a}$,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
x | (-∞,$\frac{1}{3a}$) | $\frac{1}{3a}$ | ($\frac{1}{3a}$,0) | 0 | (0,+∞) |
f′(x) | - | 0 | + | 0 | - |
f(x) | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 |
點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、分類討論的思想方法,考查了推理能力和計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{1}{2})$ | B. | (-∞,0) | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
運動時間 性別 | 運動達(dá)人 | 非運動達(dá)人 | 合計 |
男生 | 36 | ||
女生 | 26 | ||
合計 | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{7}{9}$ | D. | -$\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com