若函數(shù)(,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

答案:略
解析:

,又由題設(shè)可知f(x)R上單調(diào)遞增,

對(duì)x∈R恒成立.即R上恒成立.

,

時(shí),f(x)R上也是遞增函數(shù),


提示:

解析:由f(x)R上是單調(diào)遞增函數(shù)知,對(duì)x∈R恒成立.從而問題轉(zhuǎn)化為一元二次不等式問題.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x+5a(x<1)
logax(x≥1)
,若函數(shù)在R上是減函數(shù),則實(shí)數(shù)a的取值范圍是
[
1
8
1
3
[
1
8
,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(Ⅰ)若函數(shù)在區(qū)間(a,a+
1
2
)
(其中a>0)上存在極值,求實(shí)數(shù)a的取值范圍;
(Ⅱ)如果當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)求證.
n
k=1
[lnk+ln(k+1)]>
n2-n+1
n+1
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)已知函數(shù)f(x)=x2-2kx+k+1.
(Ⅰ)若函數(shù)在區(qū)間[1,2]上有最小值-5,求k的值.
(Ⅱ)若同時(shí)滿足下列條件①函數(shù)f(x)在區(qū)間D上單調(diào);②存在區(qū)間[a,b]⊆D使得f(x)在[a,b]上的值域也為[a,b];則稱f(x)為區(qū)間D上的閉函數(shù),試判斷函數(shù)f(x)=x2-2kx+k+1是否為區(qū)間[k,+∞)上的閉函數(shù)?若是求出實(shí)數(shù)k的取值范圍,不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)在R上的圖象均是連續(xù)不斷的曲線,且部分函數(shù)值由下表給出:
 2  3
f(x)   3 -2 
   3
 g(x)  4
則當(dāng)x=
1
1
時(shí),函數(shù)f(g(x))在區(qū)間(x,x+1)上必有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)=ax3+bx2+cx+d的圖象與y軸的交點(diǎn)為P點(diǎn),曲線在點(diǎn)P處的切線方程為12x-y-4=0.若函數(shù)在x=2處取得極值0,則函數(shù)的單調(diào)減區(qū)間為
(1,2)
(1,2)

查看答案和解析>>

同步練習(xí)冊答案