分析 (1)根據(jù)題意和等比數(shù)列的通項(xiàng)公式列出關(guān)于a1的方程,解次方程求出a1,當(dāng)n≥2時(shí),an=sn-sn-1 化簡(jiǎn)Sn=nan-2n(n-1),由等差數(shù)列的定義得數(shù)列{an}是等差數(shù)列,由等差數(shù)列的通項(xiàng)公式求出an;
(2)由(1)中求出的an分別代入$\frac{1}{{a}_{n}{a}_{n+1}}$化簡(jiǎn),利用裂項(xiàng)相消法求出數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Mn.
解答 解:(1)∵等比數(shù)列{bn}的前n頂和為Tn,公比為a1,且T5=T3+2b3,
∴T5-T3=2b3,則b4+b5=2b3,即${{a}_{1}}^{2}+{a}_{1}-2=0$,
解得 a1=1或a1=-2,
∵數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=nan-2n(n-1),
∴當(dāng)n≥2時(shí),an=sn-sn-1=nan-2n(n-1)-[(n-1)an-1-2(n-1)(n-2)],
化簡(jiǎn)可得,an-an-1=4 (n≥2).
∴數(shù)列{an}是以1為或-2首項(xiàng),以4為公差的等差數(shù)列,
則an=4n-3或an=4n-6;
(2)當(dāng)an=4n-3時(shí),$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(4n-3)(4n+1)}$=$\frac{1}{4}$($\frac{1}{4n-3}-\frac{1}{4n+1}$),
∴Mn=$\frac{1}{4}$[(1-$\frac{1}{5}$)+($\frac{1}{5}-\frac{1}{9}$)+…+($\frac{1}{4n-3}-\frac{1}{4n+1}$)].
=$\frac{1}{4}$($1-\frac{1}{4n+1}$)=$\frac{1}{4n+1}$;
當(dāng)an=4n-6時(shí),$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(4n-6)(4n-2)}$=$\frac{1}{4}$($\frac{1}{4n-6}-\frac{1}{4n-2}$),
∴Mn=$\frac{1}{4}$[(-$\frac{1}{2}$-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{6}$)+…+($\frac{1}{4n-6}-\frac{1}{4n-2}$)].
=$\frac{1}{4}$($-\frac{1}{2}$-$-\frac{1}{4n-2}$)=$-\frac{n}{4(2n-1)}$,
綜上可得,當(dāng)an=4n-3時(shí),Mn=$\frac{1}{4n+1}$;
當(dāng)an=4n-6時(shí),Mn=$-\frac{n}{4(2n-1)}$.
點(diǎn)評(píng) 本題考查等差數(shù)列的定義、通項(xiàng)公式,等比數(shù)列的通項(xiàng)公式,以及當(dāng)n≥2時(shí)an=Sn -Sn-1的應(yīng)用,考查裂項(xiàng)相消法求數(shù)列的和,考查化簡(jiǎn)、變形能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com