【題目】正方形的四個頂點都在橢圓上,若橢圓的焦點在正方形的內部,則橢圓的離心率的取值范圍是( )

A. B. C. D.

【答案】B

【解析】設正方體的邊長為橢圓的焦點在正方形的內部,,又正方形的四個頂點都在橢圓上,,,,故選B.

【方法點晴】本題主要考查利用雙曲線的簡單性質求雙曲線的離心率,屬于中檔題.求解與雙曲線性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.求離心率范圍問題應先將 用有關的一些量表示出來,再利用其中的一些關系構造出關于的不等式,從而求出的范圍.本題是利用橢圓的焦點在正方形的內部,構造出關于的不等式,最后解出的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學在高二年級開設大學選修課程《線性代數(shù)》,共有名同學選修,其中男同學名,女同學.為了對這門課程的教學效果進行評估,學校按性別采取分層抽樣的方法抽取人進行考核.

1)求抽取的人中男、女同學的人數(shù);

2)考核前,評估小組打算從選出的中隨機選出名同學進行訪談,求選出的兩名同學中恰有一名女同學的概率;

3)考核分答辯和筆試兩項. 位同學的筆試成績分別為;結合答辯情況,他們的考核成績分別為.位同學筆試成績與考核成績的方差分別記為,試比較的大小.(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2-a)(x-1)-2lnx(a∈R).

(1)若曲線g(x)=f(x)+x上點(1,g(1))處的切線過點(0,2),求函數(shù)g(x)的單調減區(qū)間;

(2)若函數(shù)y=f(x)在區(qū)間(0, )內無零點,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:函數(shù)f(x)=lg(ax2x a)的定義域為R;命題q:不等式3x-9x<a對一切正實數(shù)均成立.如果命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍( ).
A.0≤a<1
B.0≤a
C.a≤1
D.0≤a≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,值域為[1,+∞)的是(
A.y=2x+1
B.y=
C.y= +1
D.y=x+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線),焦點為,直線交拋物線,兩點,的中點,且

(1)求拋物線的方程;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若在點處的切線為,求的值;

(2)求的單調區(qū)間;

(3)若,求證:在時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0<a<1,f(x)=ax , g(x)=logax,h(x)= ,當x>1時,則有(
A.f(x)<g(x)<h(x)
B.g(x)<f(x)<h(x)
C.g(x)<h(x)<f(x)
D.h(x)<g(x)<f(x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式;

(2)若不等式在R上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案