【題目】某商場(chǎng)銷售某件商品的經(jīng)驗(yàn)表明,該商品每日的銷量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù)。已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大。
【答案】(Ⅰ);(Ⅱ)當(dāng)銷售價(jià)格為4元/千克時(shí),商場(chǎng)每日銷售該商品所獲得的利潤最大.
【解析】
試題分析:(Ⅰ)因?yàn)殇N售價(jià)格為5元/千克時(shí),每日可售出該商品11千克即為時(shí),代入解析式可求得a;(Ⅱ)本小題考查用導(dǎo)數(shù)方法解決函數(shù)最值問題,先求出函數(shù)的導(dǎo)數(shù),列表分析導(dǎo)函數(shù)在各部分區(qū)間內(nèi)的單調(diào)情況,找到極值點(diǎn),同時(shí)要注意函數(shù)的定義域.
試題解析:(Ⅰ)根據(jù)題意可得,當(dāng)時(shí),,代入解析式得:,所以;
(Ⅱ)因?yàn)?/span>,所以該商品每日銷售量為:
每日銷售該商品所獲得的利潤為:
,
所以
所以,的變化情況如下表:
(3,4) | 4 | (4,6) | |
+ | 0 | - | |
遞增 | 極大值42 | 遞減 |
由上表可得,是函數(shù)在區(qū)間(3,6)上的極大值點(diǎn),也是最大值點(diǎn);
所以當(dāng)時(shí),函數(shù)取得最大值42;
因此,當(dāng)銷售價(jià)格為4元/千克時(shí),商場(chǎng)每日銷售該商品所獲得的利潤最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:指數(shù)函數(shù)y=(1-a)x是R上的增函數(shù),命題q:不等式ax2+2x-1>0有解.若命題p是真命題,命題q是假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五棱錐中,平面平面,且.
(1)已知點(diǎn)在線段上,確定的位置,使得平面;
(2)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,與恰好重合,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為、,上頂點(diǎn)為,過與垂直的直線交軸負(fù)半軸于點(diǎn),且.
(1)求橢圓的離心率;
(2)若過、、三點(diǎn)的圓恰好與直線相切,求橢圓的方程;
(3)過的直線與(2)中橢圓交于不同的兩點(diǎn)、,則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓與軸交于兩點(diǎn),過點(diǎn)的圓的切線為是圓上異于的一點(diǎn),垂直于軸,垂足為,是的中點(diǎn),延長分別交于.
(1)若點(diǎn),求以為直徑的圓的方程,并判斷是否在圓上;
(2)當(dāng)在圓上運(yùn)動(dòng)時(shí),證明:直線恒與圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線經(jīng)過點(diǎn)A (1,0).
(1)若直線與圓C相切,求直線的方程;
(2)若直線與圓C相交于P,Q兩點(diǎn),求三角形CPQ面積的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
B. 在線性回歸分析中,回歸直線不一定過樣本點(diǎn)的中心
C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好
D. 自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)測(cè)算,某型號(hào)汽車在勻速行駛過程中每小時(shí)耗油量 (升)與速度 (千米/每小時(shí)) 的關(guān)系可近似表示為:.
(Ⅰ)該型號(hào)汽車速度為多少時(shí),可使得每小時(shí)耗油量最低?
(Ⅱ)已知兩地相距120公里,假定該型號(hào)汽車勻速從地駛向地,則汽車速度為多少時(shí)總耗油量最少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com