【題目】選修4一4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),求的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(1)證明:BD⊥PC;
(2)若AD=4,BC=2,設(shè)AC∩BD=O,且∠PDO=60°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A. “”是“”的充分不必要條件
B. 命題“若,則”的否命題為“若,則”
C. 命題“,”的否定是“,”
D. 若命題“”為假命題,則命題,都是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績?nèi)缦卤硭荆?/span>
學(xué)生 | A1 | A2 | A3 | A4 | A5 |
數(shù)學(xué)(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)要從5名學(xué)生中選2人參加一項(xiàng)活動(dòng),求選中的學(xué)生中至少有一人的物理成績高于90分的概率;
(2)請(qǐng)?jiān)谒o的直角坐標(biāo)系中畫出它們的散點(diǎn)圖,并求這些數(shù)據(jù)線性回歸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為征求個(gè)人所得稅法修改建議,某機(jī)構(gòu)對(duì)當(dāng)?shù)鼐用竦脑率杖胝{(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500)).
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖估算樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知雙曲線與橢圓有相同焦點(diǎn),且過點(diǎn),求雙曲線標(biāo)準(zhǔn)方程;
(2)已知橢圓的一個(gè)焦點(diǎn)為,橢圓上一點(diǎn)到焦點(diǎn)的最大距離是3,求這個(gè)橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有5個(gè)大小相同的球,其中有2個(gè)白球,2個(gè)黑球,1個(gè)紅球,現(xiàn)從袋中每次取出1球,去除后不放回,直到取到有兩種不同顏色的球時(shí)即終止,用表示終止取球時(shí)所需的取球次數(shù),則隨機(jī)變量的數(shù)字期望是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com