如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓經(jīng)過(guò)點(diǎn)(),且它的左焦點(diǎn)F1將長(zhǎng)軸分成2∶1,F(xiàn)2是橢圓的右焦點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上不同于左右頂點(diǎn)的動(dòng)點(diǎn),延長(zhǎng)F1P至Q,使Q、F2關(guān)于∠F1PF2的外角平分線l對(duì)稱,求F2Q與l的交點(diǎn)M的軌跡方程.
 解:(1)設(shè)橢圓的方程為(a>b>0),半焦距為c,則a2-b2=c2,
∵ 橢圓經(jīng)過(guò)點(diǎn)(,),

又∵ 它的左焦點(diǎn)F將長(zhǎng)軸分成2∶1,
∴ (a+c)∶(a-c)=2∶1,整理得a=3c.
聯(lián)立①②③,即 解得a2=36,b2=32,c2=4.
∴ 橢圓的標(biāo)準(zhǔn)方程為.           ……………………4分
(2)∵ Q、F2關(guān)于∠F1PF2的外角平分線l對(duì)稱,
∴ |PQ|=|PF2|,且M是F2Q的中點(diǎn).
由橢圓的定義知|PF1|+|PF2|=12,
∴ |PF1|+|PQ|=12,即|F1Q|=12,
∴ Q的軌跡是以F1(-2,0)為圓心,12為半徑的圓(除去與x軸的兩個(gè)交點(diǎn)),其軌跡方程為(x+2)2+y2=144(y≠0). …………………7分
設(shè)M(x,y),Q(a,b),由(1)知F2(2,0),
  可整理得a=2x-2,b=2y,
∵ Q(a,b)在圓(x+2)2+y2=144(y≠0)上運(yùn)動(dòng),
∴ (2x-2+2)2+(2y)2=144,即x2+y2=36.
∴ M的軌跡方程為x2+y2=36(y≠0).      ……………………10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知焦點(diǎn)在軸上,中心在坐標(biāo)原點(diǎn)的橢圓C的離心率為,且過(guò)點(diǎn)(題干自編)
(I)求橢圓C的方程;
(II)直線分別切橢圓C與圓(其中)于兩點(diǎn),求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓),其焦距為,若),則稱橢圓為“黃金橢圓”.
(1)求證:在黃金橢圓)中,、、成等比數(shù)列.
(2)黃金橢圓)的右焦點(diǎn)為,為橢圓上的
任意一點(diǎn).是否存在過(guò)點(diǎn)的直線,使軸的交點(diǎn)滿足?若存在,求直線的斜率;若不存在,請(qǐng)說(shuō)明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓)的左、右焦點(diǎn)分別是,以、、為頂點(diǎn)的菱形的內(nèi)切圓過(guò)焦點(diǎn)、.試寫(xiě)出“黃金雙曲線”的定義;對(duì)于上述命題,在黃金雙曲線中寫(xiě)出相關(guān)的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)p:方程表示是焦點(diǎn)在y軸上的橢圓;q:三次函數(shù)
內(nèi)單調(diào)遞增,.求使“”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、分別是橢圓C:的左焦點(diǎn)和右焦點(diǎn),O是坐標(biāo)系原點(diǎn), 且橢圓C的焦距為6, 過(guò)的弦兩端點(diǎn)所成⊿的周長(zhǎng)是.
(Ⅰ).求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)已知點(diǎn)是橢圓C上不同的兩點(diǎn),線段的中點(diǎn)為.
求直線的方程;
(Ⅲ)若線段的垂直平分線與橢圓C交于點(diǎn),試問(wèn)四點(diǎn)、是否在同一個(gè)圓上,若是,求出該圓的方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),橢圓方程為,拋物線方程為.如圖所示,過(guò)點(diǎn)軸的平行線,與拋物線在第一象限的交點(diǎn)為,已知拋物線在點(diǎn)的切線經(jīng)過(guò)橢圓的右焦點(diǎn)
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn),使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線與橢圓有共同的焦點(diǎn),點(diǎn)
是雙曲線的漸近線與橢圓的一個(gè)交點(diǎn),求橢圓與雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分14分)
已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且以為直徑的圓過(guò)橢圓的右頂點(diǎn),
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分12分)
橢圓的兩個(gè)焦點(diǎn)F1、F2,點(diǎn)P在橢圓C上,且PF1⊥F1F2,且|PF1|=
(I)求橢圓C的方程。
(II)以此橢圓的上頂點(diǎn)B為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請(qǐng)說(shuō)明有幾個(gè);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案