【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),設(shè)直線與曲線交于, 兩點(diǎn).
(Ⅰ)求線段的長(zhǎng);
(Ⅱ)已知點(diǎn)在曲線上運(yùn)動(dòng),當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo)及的最大面積.
【答案】(Ⅰ);(Ⅱ) .
【解析】試題分析:(Ⅰ)將曲線的參數(shù)方程化為普通方程,與直線方程聯(lián)立,求出 點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式求解即可;(Ⅱ)設(shè)過(guò)點(diǎn)且與直線平行的直線方程.則與相切時(shí), 的最大面積,求出 點(diǎn)坐標(biāo),根據(jù)點(diǎn)到直線的距離公式及三角形面積公式可得結(jié)果.
試題解析:(Ⅰ)曲線的普通方程為.
將直線代入中消去得, .
解得或.
所以點(diǎn), ,
所以 .
(Ⅱ)在曲線上求一點(diǎn),使的面積最大,則點(diǎn)到直線的距離最大.
設(shè)過(guò)點(diǎn)且與直線平行的直線方程.
將代入整理得, .
令 ,解得.
將代入方程,解得.
易知當(dāng)點(diǎn)的坐標(biāo)為時(shí), 的面積最大.
且點(diǎn)到直線的距離為 .
的最大面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)求證: ;
(3)求證:當(dāng)時(shí), , 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(是大于的常數(shù))的左、右頂點(diǎn)分別為、,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線、與直線分別交于、兩點(diǎn)(設(shè)直線的斜率為正數(shù)).
(Ⅰ)設(shè)直線、的斜率分別為, ,求證為定值.
(Ⅱ)求線段的長(zhǎng)度的最小值.
(Ⅲ)判斷“”是“存在點(diǎn),使得是等邊三角形”的什么條件?(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
(Ⅰ)已知,證明: ;
(Ⅱ)若對(duì)任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一段圓錐曲線,曲線與兩個(gè)坐標(biāo)軸的交點(diǎn)分別是, , .
(Ⅰ)若該曲線表示一個(gè)橢圓,設(shè)直線過(guò)點(diǎn)且斜率是,求直線與這個(gè)橢圓的公共點(diǎn)的坐標(biāo).
(Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出了四個(gè)類(lèi)比推理:
①為實(shí)數(shù),若則;類(lèi)比推出: 為復(fù)數(shù),若則.
② 若數(shù)列是等差數(shù)列, ,則數(shù)列也是等差數(shù)列;類(lèi)比推出:若數(shù)列是各項(xiàng)都為正數(shù)的等比數(shù)列, ,則數(shù)列也是等比數(shù)列.
③ 若則; 類(lèi)比推出:若為三個(gè)向量,則.
④ 若圓的半徑為,則圓的面積為;類(lèi)比推出:若橢圓的長(zhǎng)半軸長(zhǎng)為,短半軸長(zhǎng)為,則橢圓的面積為.上述四個(gè)推理中,結(jié)論正確的是( )
A. ① ② B. ② ③ C. ① ④ D. ② ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ,過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為, ,直線恰好經(jīng)過(guò)橢圓的右頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過(guò)橢圓的右焦點(diǎn)作兩條互相垂直的弦, ,設(shè), 的中點(diǎn)分別為, ,證明:直線必過(guò)定點(diǎn),并求此定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知側(cè)棱垂直于底面的四棱柱中, , , , .
(1)若是線段上的點(diǎn)且滿足,求證:平面平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com