已知集合P={x|x(x-3)<0},Q={x|-2<x<2},則P∩Q=(  )
A、(-2,0)
B、(2,3)
C、(0,2)
D、(-2,3)
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:先求出x(x-3)<0的解集,即求出集合P,再由交集的運(yùn)算求出P∩Q.
解答: 解:由x(x-3)<0得,0<x<3,則集合P=(0,3),
又Q={x|-2<x<2},所以P∩Q=(0,2),
故選:C.
點(diǎn)評:本題考查了交集及其運(yùn)算,以及一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中的函數(shù)f(x)與g(x)相同的是( 。
A、f(x)=|x|,g(x)=(
x
 )2
B、f(x)=
x2
,g(x)=x
C、f(x)=
x2-1
x+1
,g(x)=x-1
D、f(x)=x0,g(x)=
x
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn)P(m,n)(m>0,n>0),曲線Q:(x-m)2+(y-n)2=m2+n2經(jīng)過橢圓C的長軸端點(diǎn),與兩坐標(biāo)軸的相交弦長相等,且OP=
2
(其中O上坐標(biāo)原點(diǎn)).
(1)求橢圓C點(diǎn)方程;
(2)設(shè)點(diǎn)G為橢圓長軸上一點(diǎn),當(dāng)過G的直線l與曲線Q的相交弦長最大時(shí),直線l交橢圓于A,B,過點(diǎn)G且與直線l垂直的直線l′交橢圓于C,D,試問:是否存在直線l,使得四邊形ACBD的面積等于4?若存在,求出一條對應(yīng)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸是雙曲線
x2
3
-
y2
4
=1實(shí)軸所在的直線,拋物線的焦點(diǎn)到頂點(diǎn)的距離等于雙曲線虛軸的長,求拋物線的方程和準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1+a2+a3+…+an=n-an(n∈N*).
(1)求a1,a2,a3的值;
(2)求證:數(shù)列{an-1}是等比數(shù)列;
(3)設(shè)bn=an-1,且cn=bn(n-n2)(n∈N*),如果對任意n∈N*,都有cn+
1
4
t≤t2,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我市某中學(xué)一研究性學(xué)習(xí)小組,在某一高速公路服務(wù)區(qū),從小型汽車中按進(jìn)服務(wù)區(qū)的先后,每間隔5輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速(km/h)分成六段:[70,75),[75,80),[80,85),[85,90),[90,95),[95,100],統(tǒng)計(jì)后得到如圖的頻率分布直方圖.
(1)此研究性學(xué)習(xí)小組在采樣中,用到的是什么抽樣方法?并求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)從車速在[80,90)的車輛中任意抽取3輛車,求車速在[80,85),[85,90)內(nèi)都有車輛的概率;
(3)若從車速在[70,80)的車輛中任意抽取3輛,求車速在[75,80)的車輛數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不等于0的等差數(shù)列,a1=2且a2,a4,a5成等比數(shù)列,若bn=
1
n(an+2)
,則數(shù)列{bn}的前n項(xiàng)餓的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,多面體OABCD,AB=CD=2,AD=BC=2
3
,AC=BD=
10
,且OA,OB,OC兩兩垂直,給出下列4個結(jié)論:
①三棱錐O-ABC的體積是定值;
②直線AD與OB所成的角是60°;
③球面經(jīng)過點(diǎn)A、B、C、D兩點(diǎn)的球的直徑是
13
;
④直線OB∥平面ACD.
其中正確的結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+mx+5)ex,x∈R.
(1)若函數(shù)f(x)沒有極值點(diǎn),求m的取值范圍;
(2)若函數(shù)f(x)圖象在點(diǎn)(3,f(3))處切線與y軸垂直,求證:對于任意x1,x2∈[0,4]都有|f(x1)-f(x2)|≤e3+e4

查看答案和解析>>

同步練習(xí)冊答案