2.設(shè)f(x)=ax3+bx2+cx的極小值為-2,其導(dǎo)函數(shù)y=f′(x)的圖象是經(jīng)過點(diǎn)(-1,0),(1,0)開口向上的拋物線,如圖所示.
(1)求f(x)的解析式;
(2)若m≠-2,且過點(diǎn)(1,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

分析 (1)觀察圖象滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號(hào)的變化情況,來確定極小值,根據(jù)圖象可得f'(1)=0,f'(1)=0,f(1)=-2,即可求出a,b,c的值,
(2)先將過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線轉(zhuǎn)化為:方程2x3-3x2+m+3=0(*)有三個(gè)不同實(shí)數(shù)根,記g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1),下面利用導(dǎo)數(shù)研究函數(shù)g(x)的零點(diǎn),從而求得m的范圍

解答 解:(1)由圖象可知,在(-∞,1)上f'(x)>0,在(-1,1)上f'(x)<0.在(1,+∞)上f'(x)>0.
故f(x)在(-∞,1),(1,+∞)上遞增,在(-1,1)上遞減.
因此f(x)在x=1處取得極小值,
∴f(1)=a+b+c=-2
∵f'(x)=3ax2+2bx+c,
∴f'(-1)=0,f'(1)=0,
∴-1+1=$\frac{-2b}{3a}$,即b=0,-1×1=$\frac{c}{3a}$,即c=-3a,
∴a=1,b=0,c=-3,
∴f(x)=x3-3x,
(2)過點(diǎn)A(1,m)向曲線y=f(x)作切線,設(shè)切點(diǎn)為(x0,y0
則y0=x03-3x0,k=f'(x0)=3x02-3.
則切線方程為y-(x03-3x0)=(3x02-3)(x-x0
將A(1,m)代入上式,整理得2x03-3x02+m+3=0.
∵過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線
∴方程2x3-3x2+m+3=0(*)有三個(gè)不同實(shí)數(shù)根、
記g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1)、
令g'(x)=0,x=0或1、
則x,g'(x),g(x)的變化情況如下表

x(-∞,0)0(0,1)1(1,+∞)
g'(x)+0-0+
g(x)遞增極大遞減極小遞增
當(dāng)x=0,g(x)有極大值m+3;x=1,g(x)有極小值m+2
由題意有,當(dāng)且僅當(dāng)$\left\{\begin{array}{l}{g(0)>0}\\{g(1)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{m+3>0}\\{m+2<0}\end{array}\right.$,解得-3<m<-2時(shí)函數(shù)g(x)有三個(gè)不同零點(diǎn)、
此時(shí)過點(diǎn)A可作曲線y=f(x)的三條不同切線.故m的范圍是(-3,-2)

點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值、單調(diào)性,以及觀察圖形的能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=2mx+4,若在[-2,1]內(nèi)恰有一個(gè)零點(diǎn),則m的取值范圍是(  )
A.[-1,2]B.[1,+∞)C.(-∞,-2]∪[1,+∞)D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a-1<0”發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知p:(x-2)(x+1)>0;q:|x|<a,若¬p是q的必要不充分條件,則a的取值范圍是( 。
A.a<1B.a≤1C.a<2D.a≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線x-2y+1=0在y軸上的截距為( 。
A.$\frac{1}{2}$B.-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)P是拋物線y2=4x上一點(diǎn),設(shè)點(diǎn)P到此拋物線準(zhǔn)線的距離是d1,到直線x+2y-12=0的距離為d2,則d1+d2的最小值是$\frac{11\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=([x]+1)2+2,其中[x]表示不超過x的最大整數(shù),則 f(-2.5)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義在R上的偶函數(shù)f(x),滿足f(x)=-f(4-x),且當(dāng)x∈[2,4)時(shí),f(x)=log2(x-1),則f(19)的值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若△ABC的內(nèi)角A,B,C所對(duì)的邊分別是a、b、c,已知2bsin2A=asinB,且b=2,c=3,則a等于( 。
A.$\sqrt{6}$B.$\sqrt{10}$C.2$\sqrt{2}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案