現(xiàn)有一個關于平面圖形的命題:如圖所示,同一個平面內(nèi)有兩個邊長都是的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為;類比到空間,有兩個棱長均為的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為       

解析試題分析:結(jié)合空間正方體的結(jié)構(gòu)特征,即可類比推理出兩個兩個正方體重疊部分的體積,同一個平面內(nèi)有兩個邊長都是的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為;類比到空間,有兩個棱長均為的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為
考點:類比推理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

用反證法證明命題:“如果,可被整除,那么中至少有一個能被整除”時,假設的內(nèi)容應為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知,,,, ,由此你猜想出第n個數(shù)為         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

黑白兩種顏色的正六形地面磚塊按如圖的規(guī)律拼成若干個圖案,則第4個圖案中有白色地面磚________________塊.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1955年,印度數(shù)學家卡普耶卡(D.R.Kaprekar)研究了對四位自然數(shù)的一種交換:任給出四位數(shù),用的四個數(shù)字由大到小重新排列成一個四位數(shù)m,再減去它的反序數(shù)n(即將的四個數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運算,比如0001,計算時按1計算),得出數(shù),然后繼續(xù)對重復上述變換,得數(shù),…,如此進行下去,卡普耶卡發(fā)現(xiàn),無論是多大的四位數(shù),只要四個數(shù)字不全相同,最多進行k次上述變換,就會出現(xiàn)變換前后相同的四位數(shù)t(這個數(shù)稱為Kaprekar變換的核).通過研究10進制四位數(shù)2014可得Kaprekar變換的核為             .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

將石子擺成如下圖的梯形形狀.稱數(shù)列為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,判斷數(shù)列的第______________;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若等差數(shù)列的首項為公差為,前項的和為,則數(shù)列為等差數(shù)列,且通項為.類似地,請完成下列命題:若各項均為正數(shù)的等比數(shù)列的首項為,公比為,前項的積為,則     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

平面內(nèi)有條直線,其中任何兩條不平行,任何三條不共點,當時把平面分成的區(qū)域數(shù)記為,則     .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

用數(shù)學歸納法證明不等式+…+>的過程中,由n=k推導n=k+1時,不等式的左邊增加的式子是________.

查看答案和解析>>

同步練習冊答案