如圖直三棱柱ABC-A1B1C1的體積為V,點(diǎn)P、Q分別在側(cè)棱AA1和CC1上,AP=C1Q,則四棱錐B-APQC的體積為( )
A.
B.
C.
D.
【答案】分析:把問(wèn)題給理想化,認(rèn)為三棱柱是正三棱柱,設(shè)底面邊長(zhǎng)a和側(cè)棱長(zhǎng)h均為1,P、Q分別為側(cè)棱AA′,CC′上的中點(diǎn)
求出底面面積高,即可求出四棱錐B-APQC的體積.
解答:解:不妨設(shè)三棱柱是正三棱柱,設(shè)底面邊長(zhǎng)a和側(cè)棱長(zhǎng)h均為1
  則V=SABC•h=•1•1••1=  認(rèn)為P、Q分別為側(cè)棱AA′,CC′上的中點(diǎn)
  則V B-APQC=SAPQC=  (其中表示的是三角形ABC邊AC上的高)
  所以V B-APQC=V
故選B
點(diǎn)評(píng):本題考查幾何體的體積,考查計(jì)算能力,特殊化法,在解題中有獨(dú)到效果,本題還可以再特殊點(diǎn),四棱錐變?yōu)槿忮F解答更好.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖直三棱柱ABC-A1B1C1的體積為V,點(diǎn)P、Q分別在側(cè)棱AA1和CC1上,AP=C1Q,則四棱錐B-APQC的體積為( 。
A、
V
2
B、
V
3
C、
V
4
D、
V
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、如圖直三棱柱ABC-DEF中,∠CAB是直角,AB=AC=CF,則異面直線DB與AF所成角的度數(shù)為
60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•徐匯區(qū)二模)如圖直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為2,底面△ABC是等腰直角三角形,∠ABC=90°,AC=2,D是AA1的中點(diǎn)
(1)求三棱柱ABC-A1B1C1的體積V;
(2)求C1D與上底面所成角的大。ㄓ梅慈潜硎荆

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•咸陽(yáng)三模)如圖直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一點(diǎn),且AD⊥平面A1BC.
(1)求證:BC⊥平面ABB1A1
(2)求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•咸陽(yáng)三模)如圖直三棱柱ABC-A1B1C1中,AC=CC1=2,AB=BC,D是BA1上一點(diǎn),且AD⊥平面A1BC.
(1)求證:BC⊥平面ABB1A1
(2)在棱BB1是否存在一點(diǎn)E,使平面AEC與平面ABB1A1的夾角等于60°,若存在,試確定E點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案