分析 (I)證明四邊形BCD1A1,ACC1A1為平行四邊形即可得出A1B∥D1C,AC∥A1C1,從而得出平面A1BC1∥平面AD1C;
(II)用正方體的體積減去兩個(gè)小三棱錐的體積即為夾在平面A1BC1與平面AD1C之間的幾何體的體積.
解答 (I)證明:∵BC∥A1D1,BC=A1D1,
∴四邊形BCD1A1是平行四邊形,
∴A1B∥D1C,
同理可得:A1C1∥AC,
又A1B?平面A1BC1,A1C1?平面A1BC1,
D1C?平面AD1C,AC?平面AD1C,AC∩D1C=C,A1B∩A1C1=A1,
∴平面A1BC1∥平面AD1C.
(II)解:V${\;}_{B-{A}_{1}{B}_{1}{C}_{1}}$=V${\;}_{{D}_{1}-ACD}$=$\frac{1}{3}{S}_{△ACD}•D{D}_{1}$=$\frac{1}{3}×\frac{1}{2}{a}^{2}•a=\frac{{a}^{3}}{6}$,
∴V${\;}_{{A}_{1}B{C}_{1}-A{D}_{1}C}$=V正方體-V${\;}_{B-{A}_{1}{B}_{1}{C}_{1}}$-V${\;}_{{D}_{1}-ACD}$=a3-$\frac{{a}^{3}}{6}$-$\frac{{a}^{3}}{6}$=$\frac{2{a}^{3}}{3}$.
點(diǎn)評(píng) 本題考查了面面平行的判定,棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5+\frac{1}{2}t}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{3}}}{2}t}\\{y=5-\frac{1}{2}t}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5-\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17 | B. | 23 | C. | 34 | D. | 46 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com