分析 由已知利用正弦定理化角為邊,得到b=2a,c=$\frac{5}{3}a$,再由余弦定理求得cosA,利用同角三角函數(shù)基本關系式得答案.
解答 解:由sinB=2sinA,得b=2a,又b-c=$\frac{1}{3}$a,
∴b=2a,c=$\frac{5}{3}a$,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}=\frac{4{a}^{2}+\frac{25{a}^{2}}{9}-{a}^{2}}{2•2a•\frac{5}{3}a}=\frac{13}{15}$,
∴sinA=$\sqrt{1-(\frac{15}{13})^{2}}=\frac{2\sqrt{14}}{15}$,則tanA=$\frac{2\sqrt{14}}{13}$.
故答案為:$-\frac{2\sqrt{14}}{13}$.
點評 本題考查三角形的解法,考查了正弦定理和余弦定理的應用,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1] | B. | ($\frac{1}{2}$,2) | C. | [1,$\sqrt{2}$) | D. | ($\frac{\sqrt{2}}{2}$,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3<a<8 | B. | a<3或a>8 | C. | 2<a<3 | D. | a<2或a>3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com