觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49

照此規(guī)律,第n個等式為________.
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
∵1=12,2+3+4=9=32
3+4+5+6+7=25=52,
4+5+6+7+8+9+10=49=72,
所以第n個等式為
n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下面幾種推理是合情推理的是     。(填序號)
①由圓的性質(zhì)類比出球的性質(zhì);
②由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是1800,歸納得出所有三角形的內(nèi)角和為1800;
③小王某次考試成績是100分,由此推出全班同學(xué)的成績都是100分;
④三角形的內(nèi)角和是1800,四邊形內(nèi)角和是3600,五邊形的內(nèi)角和是5400,由此得凸n邊形的內(nèi)角和是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知下列三個方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一個方程有實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

學(xué)習(xí)合情推理后,甲、乙兩位同學(xué)各舉了一個例子,
甲:由“若三角形周長為l,面積為S,則其內(nèi)切圓半徑r”類比可得“若三棱錐表面積為S,體積為V,則其內(nèi)切球半徑r”;
乙:由“若直角三角形兩直角邊長分別為a、b,則其外接圓半徑r”類比可得“若三棱錐三條側(cè)棱兩兩垂直,側(cè)棱長分別為a、b、c,則其外接球半徑r”.這兩位同學(xué)類比得出的結(jié)論(  )
A.兩人都對B.甲錯、乙對
C.甲對、乙錯D.兩人都錯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復(fù)數(shù)集):
①“若ab∈R,則ab=0⇒ab”類比推出“若a,b∈C,則ab=0⇒ab”;
②“若a,b,cd∈R,則復(fù)數(shù)abi=cdi⇒ac,bd”類比推出“若a,b,c,d∈Q,則abcdac,bd”;
③“若a,b∈R,則ab>0⇒a>b”類比推出“若a,b∈C,則ab>0⇒a>b”.
其中類比得到的結(jié)論正確的個數(shù)是 (  ).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

n個連續(xù)自然數(shù)按規(guī)律排列下表:
0  3 → 4  7 → 8  11…
↓  ↑ ↓   ↑  ↓  ↑
1 → 2  5 → 6  9 → 10
根據(jù)規(guī)律,從2010到2012箭頭方向依次為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有一段演繹推理是這樣的:“若直線平行于平面,則該直線平行于平面內(nèi)所有直線;已知直線b∥平面α,直線a?平面α,則直線b∥直線a”,結(jié)論顯然是錯誤的,這是因為(  )
A.大前提錯誤B.小前提錯誤
C.推理形式錯誤D.非以上錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項:第一次取1,第二次取2個連續(xù)偶數(shù)2、4;第三次取3個連續(xù)奇數(shù)5、7、9;第四次取4個連續(xù)偶數(shù)10、12、14、16;第五次取5個連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直取下去,得到一個子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個子數(shù)列中,由1開始的第15個數(shù)是       ,第2014個數(shù)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將2n按如表的規(guī)律填在5列的數(shù)表中,設(shè)排在數(shù)表的第n行,第m列,則第m列中的前n個數(shù)的和=___________。
 








 
 








 





查看答案和解析>>

同步練習(xí)冊答案