【題目】已知三棱柱ABC﹣A1B1C1的底面是銳角三角形,則存在過點A的平面( )
A.與直線BC和直線A1B1都平行
B.與直線BC和直線A1B1都垂直
C.與直線BC平行且直線A1B1垂直
D.與直線BC和直線A1B1所成角相等
【答案】D
【解析】解:對于A,過點A與直線A1B1平行的平面經(jīng)過B,與直線BC相交,不正確;
對于B,過點A與直線BC垂直的平面存在,則CB⊥AB,與底面是銳角三角形矛盾,不正確
對于C,過點A與直線BC平行且直線A1B1垂直,則CB⊥AB,與底面是銳角三角形矛盾,不正確;
對于D,存在過點A與BC中點的平面,與直線BC和直線AB所成角相等,∴與直線BC和直線A1B1所成角相等,正確.
故選:D.
【考點精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個數(shù)列從第2項起,每一項與它前一項的差都大于2,則稱這個數(shù)列為“H型數(shù)列”.
(1)若數(shù)列{an}為“H型數(shù)列”,且a1= ﹣3,a2= ,a3=4,求實數(shù)m的取值范圍;
(2)是否存在首項為1的等差數(shù)列{an}為“H型數(shù)列”,且其前n項和Sn滿足Sn<n2+n(n∈N*)?若存在,請求出{an}的通項公式;若不存在,請說明理由.
(3)已知等比數(shù)列{an}的每一項均為正整數(shù),且{an}為“H型數(shù)列”,bn= an , cn= ,當(dāng)數(shù)列{bn}不是“H型數(shù)列”時,試判斷數(shù)列{cn}是否為“H型數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|= ,z2的虛部為2.
(1)求z;
(2)設(shè)z,z2 , z﹣z2在復(fù)平面對應(yīng)的點分別為A,B,C,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術(shù)求80和36的最大公約數(shù).
(3)把89化為二進制數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,點B1在底面內(nèi)的射影恰好是BC的中點,且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值為 ,求斜三棱柱ABC﹣A1B1C1的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1,在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且f(B)=1.
(1)求B;
(2)若 =3,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《數(shù)書九章》是中國南宋時期杰出數(shù)學(xué)家秦九韶的著作,全書十八卷共八十一個問題,分為九類,每類九個問題,《數(shù)書九章》中記錄了秦九昭的許多創(chuàng)造性成就,其中在卷五“三斜求職”中提出了已知三角形三邊a,b,c求面積的公式,這與古希臘的海倫公式完成等價,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實,一為從隅,開平方得積.”若把以上這段文字寫成公式,即S= ,現(xiàn)有周長為10+2 的△ABC滿足sinA:sinB:sinC=2:3: ,則用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2﹣ax+lnx,a∈R.
(1)當(dāng)a=3時,求函數(shù)f(x)的極小值;
(2)令g(x)=x2﹣f(x),是否存在實數(shù)a,當(dāng)x∈[1,e](e是自然對數(shù)的底數(shù))時,函數(shù)g(x)取得最小值為1.若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(2,0),半徑為 ,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.,直線l的參數(shù)方程為: (t為參數(shù)).
(1)求圓C和直線l的極坐標(biāo)方程;
(2)點P的極坐標(biāo)為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com