9.若函數(shù)f(x)=xm+nx的導(dǎo)函數(shù)是f'(x)=2x+1,則$\int_{\;\;1}^{\;\;3}{f(-x)dx=}$( 。
A.1B.2C.$\frac{4}{3}$D.$\frac{14}{3}$

分析 根據(jù)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f′(x)=2x+1求出f(x),進(jìn)而求出f(-x),根據(jù)定積分的性質(zhì),找出函數(shù)f(-x)的原函數(shù)然后代入計(jì)算即可.

解答 解:由于f(x)=xm+nx的導(dǎo)函數(shù)f′(x)=2x+1,
∴f(x)=x2+x,
于是$\int_{\;\;1}^{\;\;3}{f(-x)dx=}$∫13(x2-x)dx
=($\frac{1}{3}$x3-$\frac{1}{2}$x2)|13=$\frac{14}{3}$.
故選D.

點(diǎn)評(píng) 此題考查定積分的性質(zhì)及其計(jì)算,要掌握定積分基本的定義和性質(zhì),解題的關(guān)鍵是找出原函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=1+ln(x+1).
(1)求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)當(dāng)x>0時(shí),f(x)>$\frac{kx}{x+1}$恒成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(Ⅰ)設(shè)角$α=\frac{π}{6}$,求$\frac{{2sin({π+α})cos({π-α})-cos({π+α})}}{{1+{{sin}^2}α+sin({π-α})-{{cos}^2}({π+α})}}$的值;
(Ⅱ)已知$\frac{tanα}{tanα-6}=-1$,求值:$\frac{2cosα-3sinα}{3cosα+4sinα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若隨機(jī)變量X~N(μ,σ2)(σ>0),則有如下結(jié)論:$\begin{array}{l}P({μ-σ<X≤μ+σ})=0.6826,P({μ-2σ<X≤μ+2σ})=0.9544,\\ P({μ-3σ<X≤μ+3σ})=0.9974\end{array}$
高三(1)班有40名同學(xué),一次數(shù)學(xué)考試的成績(jī)服從正態(tài)分布,平均分為120,方差為100,理論上說(shuō)在130分以上人數(shù)約為(  )
A.19B.12C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A.f(x)=sin(2x-$\frac{π}{4}$)B.f(x)=sin(2x+$\frac{π}{4}$)C.f(x)=sin(4x+$\frac{π}{4}$)D.f(x)=sin(4x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.等腰直角三角形ABC中,斜邊BC=6,則$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BC}$•$\overrightarrow{BA}$+$\overrightarrow{CA}$$•\overrightarrow{CB}$的值為( 。
A.25B.36C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.雙曲線$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的頂點(diǎn)到漸近線的距離為( 。
A.2$\sqrt{3}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=2sin(3x+φ)(|φ|<$\frac{π}{2}$)的一條對(duì)稱軸為x=-$\frac{π}{12}$,則φ=( 。
A.-$\frac{π}{4}$B.-$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若復(fù)數(shù)z同時(shí)滿足$z-\overline z=2i$,$\overline z=iz$,則z=-1+i.

查看答案和解析>>

同步練習(xí)冊(cè)答案