設(shè)三次函數(shù)f(x)=ax3+bx2+cx+d(a<b<c),在x=1處取得極值,其圖像在x=m處的切線的斜率為-3a.

(1)求證:;

(2)若函數(shù)y=f(x)在區(qū)間[s,t]上單調(diào)遞增,求|s-t|的取值范圍;

(3)問是否存在實數(shù)k(k是與a,b,c,d無關(guān)的常數(shù)),當(dāng)x≥k時,恒有恒成立?若存在,試求出k的最小值;若不存在,請說明理由.

答案:
解析:

  (1),由題設(shè),得、

   ②

  ∵

  由①代入②得

  得、

  將代入中,得、

  由③、④得;…………5分

  (1)由(1)知,

  ∴方程的判別式有兩個不等實根,

  又,∴

  ∴當(dāng)時,,當(dāng)時,

  ∴函數(shù)的單調(diào)區(qū)間是,∴

  由

  ∵函數(shù)在區(qū)間[s,t]上單調(diào)遞增,∴[s,t],

  ∴,即的取值范圍是,…………10分

  (2)由,即

  ∵,令,

  要使上恒成立,

  只需 即,∴

  由題意,得

  ∴存在實數(shù)k滿足條件,即k的最小值為.…………14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:內(nèi)蒙古呼倫貝爾市牙克石林業(yè)一中2012屆高三上學(xué)期第二次模擬考試數(shù)學(xué)文科試題 題型:013

設(shè)三次函數(shù)f(x)的導(dǎo)函數(shù)為(x),函數(shù)yx·(x)的圖象的一部分如圖所示,則

[  ]
A.

f(x)的極大值為f(),極小值為f(-)

B.

f(x)的極大值為f(-),極小值為f()

C.

f(x)的極大值為f(-3),極小值為f(3)

D.

f(x)的極大值為f(3),極小值為f(-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省珠海一中2012屆高三高考模擬數(shù)學(xué)文科試題 題型:022

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)是函數(shù)yf(x)的導(dǎo)數(shù)y的導(dǎo)數(shù),若方程=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)yf(x)的“拐點”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.”

請你將這一發(fā)現(xiàn)為條件,函數(shù),則它的對稱中心為________;

計算________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高三數(shù)學(xué) 蘇教版(新課標·2004年初審) 蘇教版 題型:044

設(shè)三次函數(shù)f(x)=ax3+bx2+cx+d(a<b<c),在x=1處取得極值,其圖象在x=m處的切線的斜率為-3a.

(Ⅰ)求證:

(Ⅱ)若函數(shù)y=f(x)在區(qū)間[s,t]上單調(diào)遞增,求|s-t|的取值范圍;

(Ⅲ)問是否存在實數(shù)k(k是與a,b,c,d無關(guān)的常數(shù)),當(dāng)x≥k時,恒有恒成立?若存在,試求出k的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第一次月考理科數(shù)學(xué)試卷 題型:填空題

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.如“函數(shù)f(x)=x3-3x2+3x對稱中心為點 (1,1)”請你將這一發(fā)現(xiàn)

 

查看答案和解析>>

同步練習(xí)冊答案