已知定義在R上的函數(shù)f(x)=4x-a•2x+1+1(a∈R)在[2,+∞)上單調(diào)遞增,且f(x)=0有實根.
(1)求實數(shù)a的取值范圍;
(2)求函數(shù)f(x)在[0,2]上的最大值M(a).
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令t=2x,(t>0),函數(shù)f(x)=4x-a•2x+1+1可化為y=t2-2at+1,結(jié)合函數(shù)f(x)在[2,+∞)上單調(diào)遞增,且f(x)=0有實根.分別求出滿足條件的實數(shù)a的取值范圍,最后綜合討論結(jié)果,可得答案.
(2)當(dāng)x∈[0,2]時,t∈[1,4],結(jié)合函數(shù)y=t2-2at+1的圖象和性質(zhì)及(1)中a的范圍,可得答案.
解答: 解:(1)∵令t=2x,(t>0),則y=f(x)=4x-a•2x+1+1=t2-2at+1,
∵f(x)=4x-a•2x+1+1(a∈R)在[2,+∞)上單調(diào)遞增,
∴y=t2-2at+1,在[4,+∞)上單調(diào)遞增,
∴a≤4,
若f(x)=0有實根,則y=t2-2at+1有正根,
△=4a2-4≥0
2a>0

解得:a≥1,
綜上可得實數(shù)a的取值范圍為[1,4],
(2)當(dāng)x∈[0,2]時,t∈[1,4],
∵y=t2-2at+1的圖象開口朝上,且以直線x=a為對稱軸,
若a∈[1,2],則M(a)=17-8a,
若a∈(2,4],則M(a)=2-2a.
點(diǎn)評:本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),換元法,指數(shù)函數(shù)的圖象和性質(zhì),難度中檔.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P,Q分別為圓x2+(y-1)2=1和橢圓
x2
14
+
y2
7
=1上的動點(diǎn),則|PQ|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在(a,b)上的導(dǎo)函數(shù)為f″(x),若在(a,b)上,f″(x)<0恒成立,則稱函數(shù)函數(shù)f(x)在(a,b)上為“凸函數(shù)”.已知當(dāng)m≤2時,f(x)=
1
6
x3-
1
2
mx2
+x在(-1,2)上是“凸函數(shù)”.則f(c)在(-1,2)上( 。
A、既有極大值,也有極小值
B、既有極大值,也有最小值
C、有極大值,沒有極小值
D、沒有極大值,也沒有極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)了統(tǒng)計知識后,小明就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計.圖(1)和圖(2)是他通過采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)求該班共有多少名學(xué)生?
(2)在圖(1)中,將表示“步行”的部分補(bǔ)充完整;
(3)如果全年級共600名同學(xué),請你估算全年級步行上學(xué)的學(xué)生人數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:空間四邊形的內(nèi)角和小于360度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義域為R的偶函數(shù),且在區(qū)間[0,4]上單調(diào)遞減,則有( 。
A、f(-π)>f(-1)>f(
π
3
B、f(
π
3
)>f(-1)>f(-π)
C、f(-1)>f(
π
3
)>f(-π)
D、f(-1)>f(-π)>f(
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cos A=
6
3
,a,b,c分別是角A,B,C所對的邊.
(1)求sin 2A;
(2)若sin(
2
+B)=-
2
2
3
,c=2
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程log4(3x-1)=log4(x-1)+log4(3+x)的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是( 。
A、若向量
a
b
,則存在唯一的實數(shù)λ使 
a
b
B、已知向量
a
,
b
為非零向量,則“
a
,
b
的夾角為鈍角”的充要條件是“
a
b
<0
C、若命題 p:?x∈R,x2-x+1<0,則?p:?x∈R,x2-x+1>0
D、“若 θ=
π
3
,則 cosθ=
1
2
”的否命題為“若 θ≠
π
3
,則 cosθ≠
1
2

查看答案和解析>>

同步練習(xí)冊答案