5.?dāng)?shù)列{an}為等比數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和,且Sn>0,a6是a5、a4的等差中項(xiàng),則數(shù)列{an}的公比q為(  )
A.-$\frac{1}{2}$或1B.$\frac{1}{2}$或1C.1D.-$\frac{1}{2}$

分析 利用等差數(shù)列的性質(zhì)與等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵a6是a5、a4的等差中項(xiàng),
∴2a6=a5+a4
即2a5q=a5+$\frac{{a}_{5}}{q}$,
∵Sn>0,數(shù)列{an}為等比數(shù)列,
∴2q=1+$\frac{1}{q}$,
即2q2-q-1=0,
解得q=1,
故選:C,

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力和計(jì)算能力,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,若輸入n=6,則輸出的S=(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{3}{7}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列各式的大小關(guān)系正確的是( 。
A.sin11°>sin168°B.sin194°<cos160°
C.tan(-$\frac{π}{5}$)<tan(-$\frac{3π}{7}$)D.cos(-$\frac{15π}{8}$)>cos$\frac{14π}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知三點(diǎn)A(3,2),B(5,-3),C(-1,3),以P(2,-1)為圓心作一個(gè)圓,使A,B、C三點(diǎn)中一點(diǎn)在圓外,一點(diǎn)在圓上,一點(diǎn)在圓內(nèi),求這個(gè)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=[2sin(x+$\frac{2π}{3}$)+sinx]•cosx-$\sqrt{3}$sin2x;將f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位后得g(x)的圖象.
(1)求函數(shù)g(x)在[0,π]上的值域;
(2)在△ABC中,若$\frac{sinB}$=$\frac{\sqrt{3}a}{cosA}$,a=4,求$\sqrt{3}$b-c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|1≤ax≤2},B={x||x|≤1},是否存在實(shí)數(shù)a,使得A⊆B?求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知三條直線l1、l2、l3,它們的傾斜角之比依次為1:2:3,若l2的斜率為$\sqrt{3}$,求其余兩條直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.函數(shù)f(x)=2x和g(x)=x3的部分圖象的示意圖如圖所示.設(shè)兩函數(shù)的圖象交于點(diǎn)A(x1,y1)、B(x2,y2),x1<x2
(1)請(qǐng)指出示意圖中曲線C1、C2分別對(duì)應(yīng)哪一個(gè)函數(shù)?
(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a、b的值,并說(shuō)明理由;
(3)結(jié)合函數(shù)圖象示意圖,判斷f(6)、g(6)、f(2010)、g(2010)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=AD=4,BC=2,若P為線段CD上一點(diǎn),且滿足$\overrightarrow{DP}=λ\overrightarrow{DC}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=5,則$|{\overrightarrow{PA}}$|=$\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案