分析 根據(jù)右焦點(diǎn)F到其一條漸近線距離為3,得到b=3,以及a,b的關(guān)系進(jìn)行求解即可.
解答 解:∵雙曲線$\frac{x^2}{m}$-$\frac{y^2}{m-3}$=1的右焦點(diǎn)F到其一條漸近線距離為3,
則a2=m>0,b2=m-3>0,則m>3,
則設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,右焦點(diǎn)F(c,0),漸近線為y=±$\frac{a}$x,
不妨設(shè)其中一條直線為bx-ay=0,
得焦點(diǎn)到漸近線的距離d=$\frac{|bc|}{\sqrt{{a}^{2}+^{2}}}$=$\frac{bc}{c}=b$,
∵右焦點(diǎn)F到其一條漸近線距離為3,
∴b=3,即b2=m-3=9,得m=12,
故答案為:12.
點(diǎn)評 本題主要考查雙曲線方程的應(yīng)用,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{\sqrt{7}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com