已知雙曲線
x2
a
-
y2
4
=1的漸近線方程為y=±
2
3
3
,則此雙曲線的離心率為(  )
A、
7
2
B、
13
3
C、
5
3
D、
21
3
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的漸近線方程,解方程可得a=3,再由a,b,c的關(guān)系可得c,再由離心率公式,計(jì)算即可得到.
解答: 解:∵雙曲線
x2
a
-
y2
4
=1的漸近線方程為y=±
2
a
x,
2
a
=
2
3
3
,即
4
a
=
4
3
,
∴a=3,半焦距c=
3+4
=
7
,
e=
7
3
=
21
3

故選:D.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查漸近線方程和離心率的求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上的向量
PA
、
PB
滿足|
PA
|2+|
PB
|2=4,|
AB
|=2,設(shè)向量
PC
=2
PA
+
PB
,則|
PC
|的最小值是( 。
A、1
B、2
C、
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=20.5,b=log2
2
2
,c=logπ3,則有( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求曲線y=sin(2x+
π
4
)經(jīng)伸縮變換
x′=2x
y′=
1
2
y
后的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面α截球 O的球面得圓 M,過(guò)圓心 M的平面β與α的夾角為
π
6
,且平面β截球 O的球面得圓 N.已知球 O的半徑為5,圓 M的面積為9π,則圓 N的半徑為( 。
A、3
B、
13
C、4
D、
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)頂點(diǎn)是(0,2),且離心率為
1
2
的橢圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)A(2,0),定圓B:(x+2)2+y2=4,動(dòng)圓過(guò)點(diǎn)A且與圓B相切,求動(dòng)圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x、y中至少有一個(gè)小于零”是“x+y<0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某算法的程序框圖如圖所示,如果輸出的結(jié)果為26,則判斷框內(nèi)的條件應(yīng)為( 。
A、k≤5?B、k>4?
C、k>3?D、k≤4?

查看答案和解析>>

同步練習(xí)冊(cè)答案