【題目】已知函數
(1)若函數在上單調遞減,求實數的取值范圍;
(2)是否存在實數,使得在上的值域恰好是?若存在,求出實數的值;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點、公共站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是一種分時租賃模式,是共享經濟的一種新形態(tài).某共享單車企業(yè)在城市就“一天中一輛單車的平均成本與租用單車數量之間的關系”進行了調查,并將相關數據統(tǒng)計如下表:
租用單車數量(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
根據以上數據,研究人員設計了兩種不同的回歸分析模型,得到兩個擬合函數:
模型甲: ,模型乙: .
(1)為了評價兩種模型的擬合效果,完成以下任務:
①完成下表(計算結果精確到0.1元)(備注: , 稱為相應于點的殘差);
租用單車數量(千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | 2.4 | 2 | 1.8 | 1.4 | |
殘差 | 0 | 0 | 0.1 | 0.1 | ||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及,并通過比較, 的大小,判斷哪個模型擬合效果更好.
(2)這家企業(yè)在城市投放共享單車后,受到廣大市民的熱烈歡迎并供不應求,于是該企業(yè)決定增加單車投放量.根據市場調查,市場投放量達到1萬輛時,平均每輛單車一天能收入7.2元;市場投放量達到1.2萬輛時,平均每輛單車一天能收入6.8元.若按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,問該企業(yè)投放量選擇1萬輛還是1.2萬輛能獲得更多利潤?請說明理由.(利潤=收入-成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率,左焦點為,右頂點為,過點的直線交橢圓于兩點,若直線垂直于軸時,有.
(1)求橢圓的方程;
(2)設直線: 上兩點, 關于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一個半徑為2千米,圓心角為的扇形游覽區(qū)的平面示意圖是半徑上一點,是圓弧上一點,且.現在線段,線段及圓弧三段所示位置設立廣告位,經測算廣告位出租收入是:線段處每千米為元,線段及圓弧處每千米均為元.設弧度,廣告位出租的總收入為元.
(1)求關于的函數解析式,并指出該函數的定義域;
(2)試問:為何值時,廣告位出租的總收入最大?并求出其最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】調查機構對全國互聯(lián)網行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網行業(yè)崗位分布條形圖,則下列結論中不一定正確的是( )
A.互聯(lián)網行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網行業(yè)中從事技術崗位的人數超過總人數的20%
C.互聯(lián)網行業(yè)中從事運營崗位的人數90后比80后多
D.互聯(lián)網行業(yè)中從事運營崗位的人數90后比80前多
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com