【題目】為了了解一個(gè)智力游戲是否與性別有關(guān),從某地區(qū)抽取男女游戲玩家各200請(qǐng)客,其中游戲水平分為高級(jí)和非高級(jí)兩種.

1)根據(jù)題意完善下列列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%以上的把握認(rèn)為智力游戲水平高低與性別有關(guān)?

性別

高級(jí)

非高級(jí)

合計(jì)

40

140

合計(jì)

2)按照性別用分層抽樣的方法從這些人中抽取10人,從這10人中抽取3人作為游戲參賽選手;

若甲入選了10人名單,求甲成為參賽選手的概率;

設(shè)抽取的3名選手中女生的人數(shù)為,求的分布列和期望.

附表:,其中

0.010

0.05

0.001

6.635

7.879

10.828

【答案】1)列聯(lián)表見解析,沒有99%以上的把握認(rèn)為智力游戲水平高低與性別有關(guān),

2,分布列見解析,

【解析】

1)根據(jù)題意完善列聯(lián)表,再計(jì)算,對(duì)照臨界值得出結(jié)論即可.

2人中抽取人共有個(gè)基本事件,甲為參賽選手共有個(gè)基本事件,再利代入古典概型公式即可.首先用分層抽樣得到抽取的男、女生人數(shù),得到女生的人數(shù)的所有取值為0,1,2,3,計(jì)算出相應(yīng)的概率,再列出分布列,計(jì)算數(shù)學(xué)期望即可.

1

性別

高級(jí)

非高級(jí)

合計(jì)

40

160

200

60

140

200

合計(jì)

100

300

400

,所以沒有99%以上的把握認(rèn)為智力游戲水平高低與性別有關(guān)

2甲入選3人名單的概率為;

根據(jù)分層抽樣的特征10人中男女各5人,女生的人數(shù)的所有取值為0,1,2,3;

,,

,;

所以的分布列為

0

1

2

3

期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,試判斷的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線.

1)求曲線的標(biāo)準(zhǔn)方程;

2)已知過坐標(biāo)原點(diǎn)的直線交曲線、兩點(diǎn),若在曲線上存在點(diǎn),使得,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線與軸平行,求;

2)已知上的最大值不小于,求的取值范圍;

3)寫出所有可能的零點(diǎn)個(gè)數(shù)及相應(yīng)的的取值范圍.(請(qǐng)直接寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年起,全國各省市陸續(xù)實(shí)施了新高考,許多省市采用了“”的選科模式,即:考生除必考的語數(shù)外三科外,再從物理化學(xué)生物歷史地理政治六個(gè)學(xué)科中,任意選取三科參加高考,為了調(diào)查新高考中考生的選科情況,某地調(diào)查小組對(duì)某中學(xué)進(jìn)行了一次調(diào)查,研究考生選擇化學(xué)與選擇物理是否有關(guān).已知在調(diào)查數(shù)據(jù)中,選物理的考生與不選物理的考生人數(shù)相同,其中選物理且選化學(xué)的人數(shù)占選物理人數(shù)的,在不選物理的考生中,選化學(xué)與不選化學(xué)的人數(shù)比為

1)若在此次調(diào)查中,選物理未選化學(xué)的考生有100人,將選物理且選化學(xué)的人數(shù)占選化學(xué)總?cè)藬?shù)的比作為概率,從該中學(xué)選化學(xué)的考生中隨機(jī)抽取4人,記這4人中選物理且選擇化學(xué)的考生人數(shù)為,求的分布列(用排列數(shù)組合數(shù)表示即可)和數(shù)學(xué)期望.

2)若研究得到在犯錯(cuò)誤概率不超過001的前提下,認(rèn)為選化學(xué)與選物理有關(guān),則選物理且選化學(xué)的人數(shù)至少有多少?(單位:百人,精確到001)

附:,其中

0100

0050

0010

0001

2706

3841

6635

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,對(duì)該幾何體有如下描述:

①四個(gè)側(cè)面都是直角三角形;

②最長的側(cè)棱長為

③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形;

④外接球的表面積為24π.

其中正確的描述為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=(1+xt1的定義域?yàn)椋ī?/span>1+∞),其中實(shí)數(shù)t滿足t≠0t≠1.直線lygx)是fx)的圖象在x0處的切線.

1)求l的方程:ygx);

2)若fxgx)恒成立,試確定t的取值范圍;

3)若a1,a2∈(01),求證: .注:當(dāng)α為實(shí)數(shù)時(shí),有求導(dǎo)公式(xααxα1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)處取得極值,求實(shí)數(shù)的值.

(Ⅱ)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.

1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:

A市居民

B市居民

喜歡楊樹

300

200

喜歡木棉樹

250

250

是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;

2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹,求的分布列以及數(shù)學(xué)期望;

3)在所有的路口種植完成后,選取3個(gè)種植同一種樹的路口,記總的選取方法數(shù)為,求證:.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案