【題目】已知橢圓 的右焦點為F(2,0),M為橢圓的上頂點,O為坐標原點,且△MOF是等腰直角三角形.
(1)求橢圓的方程;
(2)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點( ).
【答案】
(1)解:由△MOF是等腰直角三角形,得c2=b2=4,a2=8,
故橢圓方程為: =1.
(2)證明:
①若直線AB的斜率存在,設(shè)AB的方程為:y=kx+m,依題意得m≠±2,
設(shè)A(x1,y1),B(x2,y2),
由 ,得(1+2k2)x2+4kmx+2m2﹣8=0,
則 .
由已知 k1+k2=8,可得 ,
所以 ,即 .
所以 ,整理得 .
故直線AB的方程為 ,即y=k( )﹣2.
所以直線AB過定點( ).
②若直線AB的斜率不存在,設(shè)AB方程為x=x0,
設(shè)A(x0,y0),B(x0,﹣y0),
由已知 ,得 .
此時AB方程為 ,顯然過點( ).
綜上,直線AB過定點( ).
【解析】(1)由△MOF是等腰直角三角形,得c2=b2=4,再根據(jù)a2=b2+c2可求得a;(2)分情況討論:①當直線AB的斜率存在時,設(shè)AB的方程為:y=kx+m,聯(lián)立直線AB方程與橢圓方程消掉y得x的二次方程,由韋達定理及k1+k2=8可得關(guān)于k,m的關(guān)系式,消m代入直線AB方程可求得定點坐標;②若直線AB的斜率不存在,設(shè)AB方程為x=x0 , 由已知可求得AB方程,易驗證其過定點;
【考點精析】掌握橢圓的標準方程是解答本題的根本,需要知道橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學 來源: 題型:
【題目】選修4﹣4:坐標系與參數(shù)方程
在平面直角坐標系x0y中,動點A的坐標為(2﹣3sinα,3cosα﹣2),其中α∈R.在極坐標系(以原點O為極點,以x軸非負半軸為極軸)中,直線C的方程為ρcos(θ﹣ )=a.
(1)判斷動點A的軌跡的形狀;
(2)若直線C與動點A的軌跡有且僅有一個公共點,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了緩解交通壓力,提倡低碳環(huán)保,鼓勵市民乘坐公共交通系統(tǒng)出行.為了更好地保障市民出行,合理安排運力,有效利用公共交通資源合理調(diào)度,在某地鐵站點進行試點調(diào)研市民對候車時間的等待時間(候車時間不能超過20分鐘),以便合理調(diào)度減少候車時間,使市民更喜歡選擇公共交通.為此在該地鐵站的一些乘客中進行調(diào)查分析,得到如下統(tǒng)計表和各時間段人數(shù)頻率分布直方圖:
分組 | 等待時間(分鐘) | 人數(shù) |
第一組 | [0,5) | 10 |
第二組 | [5,10) | a |
第三組 | [10,15) | 30 |
第四組 | [15,20) | 10 |
(1)求出a的值;要在這些乘客中用分層抽樣的方法抽取10人,在這10個人中隨機抽取3人至少一人來自第二組的概率;
(2)從這10人中隨機抽取3人進行問卷調(diào)查,設(shè)這3個人共來自X個組,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 在x=1處取得極值.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當x∈[1,+∞)時,f(x)≥ 恒成立,求實數(shù)m的取值范圍;
(3)當n∈N* , n≥2時,求證:nf(n)<2+ + +…+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)個質(zhì)數(shù)構(gòu)成公差為的等差數(shù)列,且.求證
(1)當是質(zhì)數(shù)時,;
(2)當時,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com