(2012•濟(jì)寧一模)觀察下列式子:1+
1
2
2
 
3
2
,1+
1
2
2
 
+
1
3
2
 
5
3
,1+
1
2
2
 
+
1
3
2
 
+
1
4
2
 
7
4
,…,根據(jù)上述規(guī)律,第n個(gè)不等式應(yīng)該為
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
分析:根據(jù)規(guī)律,不等式的左邊是n+1個(gè)自然數(shù)倒數(shù)的平方的和,右邊分母是以2為首項(xiàng),1為公差的等差數(shù)列,分子是以3為首項(xiàng),2為公差的等差數(shù)列,由此可得結(jié)論.
解答:解:根據(jù)規(guī)律,不等式的左邊是n+1個(gè)自然數(shù)倒數(shù)的平方的和,右邊分母是以2為首項(xiàng),1為公差的等差數(shù)列,分子是以3為首項(xiàng),2為公差的等差數(shù)列,所以第n個(gè)不等式應(yīng)該為1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1

故答案為:1+
1
22
+
1
32
+…+
1
(n+1)2
2n+1
n+1
點(diǎn)評(píng):本題考查歸納推理,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧一模)給出下列命題:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②命題“若am2<bm2,則a<b”的逆命題是真命題;
③f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),x>0時(shí)的解析式是f(x)=2*.則x<0時(shí)的解析式為f(x)=-2-x;
④若隨機(jī)變量ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2.
其中真命題的序號(hào)是
①③④
①③④
.(寫出所有你認(rèn)為正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧一模)若等邊△ABC的邊長為2
3
,平面內(nèi)一點(diǎn)M滿足
CM
=
1
3
CB
+
1
3
CA
,則
MA
MB
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧一模)設(shè)全集U={x∈N*|x<6},集合A={1,3},B={3,5},則?U(A∪B)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)寧一模)已知
2
x
+
8
y
=1,(x>0,y>0),則x+y的最小值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案