已知f(x)=-(x2-ax+3a)在區(qū)間[2,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍為   
【答案】分析:對數(shù)函數(shù)的真數(shù)必須是正數(shù),這是解決對數(shù)問題優(yōu)先考慮的;由于以 為底的對數(shù)函數(shù)是減函數(shù),故對數(shù)函數(shù)的真數(shù)部分的二次函數(shù)要是增函數(shù)才行.
解答:解:∵f(x)=log (x2-ax+3a)在[2,+∞)上是減函數(shù),
∴u=x2-ax+3a在[2,+∞)上為增函數(shù),且在[2,+∞)上恒大于0.
∴得到:
解得:-4<a≤4,
則實(shí)數(shù)a的取值范圍為(-4,4]
故答案為:(-4,4].
點(diǎn)評:處理函數(shù)問題的一個原則是定義域優(yōu)先考慮,否則容易出錯,另外復(fù)合函數(shù)的單調(diào)性問題,必須分開考慮.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f (x)=sin (x+
π
2
),g (x)=cos (x-
π
2
),則下列命題中正確的是( 。
A、函數(shù)y=f(x)•g(x)的最小正周期為2π
B、函數(shù)y=f(x)•g(x)是偶函數(shù)
C、函數(shù)y=f(x)+g(x)的最小值為-1
D、函數(shù)y=f(x)+g(x)的一個單調(diào)增區(qū)間是[-
4
,
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1,x<0
2,x≥0
,g(x)=
3f(x-1)-f(x-2)
2

(1)當(dāng)1≤x<2時,求g(x);
(2)當(dāng)x∈R時,求g(x)的解析式,并畫出其圖象;
(3)求方程xf[g(x)]=2g[f(x)]的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化簡f (x)的解析式;
(2)若0≤θ≤π,求θ使函數(shù)f (x)為偶函數(shù);
(3)在(2)成立的條件下,求滿足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案