(2012•許昌三模)已知A,B是圓x2+y2=2上兩動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),且∠AOB=120°,以A,B為切點(diǎn)的圓的兩條切線交于點(diǎn)P,則點(diǎn)P的軌跡方程為
x2+y2=8
x2+y2=8
分析:由對(duì)稱性可知,動(dòng)點(diǎn)P軌跡一定是圓心在原點(diǎn)的圓,求出|OP|即可得到點(diǎn)P的軌跡方程.
解答:解:由題意,A,O,B,P四點(diǎn)共圓,且圓的直徑為OP
∵∠AOB=120°,PA,PB為圓的切線
∴∠AOP=60°
∵|OA|=
2
,∠OAP=90°
∴|OP|=2
2

∴點(diǎn)P的軌跡方程為x2+y2=8
故答案為:x2+y2=8.
點(diǎn)評(píng):本題考查軌跡方程的求法,確定A,O,B,P四點(diǎn)共圓,且圓的直徑為OP是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)已知數(shù)列{an}中,a1=a2=1,且an+2-an=1,則數(shù)列{an}的前100項(xiàng)和為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)如圖,在RT△ABC中,D是斜邊AB上一點(diǎn),且AC=AD,記∠BCD=β,∠ABC=α.
(Ⅰ)求sinα-cos2β的值;
(Ⅱ)若BC=
3
CD,求∠CAB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)如圖,在四面體ABCD中,二面角A-CD-B的平面角為60°,AC⊥CD,BD⊥CD,且AC=CD=2BD,點(diǎn)E、F分別是AD、BC的中點(diǎn).
(Ⅰ)求作平面α,使EF?α,且AC∥平面α,BD∥平面α;
(Ⅱ)求證:EF⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)已知函數(shù)f(x)=ex,若函數(shù)g(x)滿足f(x)≥g(x)恒成立,則稱g(x)為函數(shù)f(x)的下界函數(shù).
(Ⅰ)若函數(shù)g(x)-kx是f(x)的下界函數(shù),求實(shí)數(shù)k的取值范圍;
(Ⅱ)證明:對(duì)于?m≤2,,函數(shù)h(x)=m+lnx都是f(x)的下界函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案