函數(shù)f(x)=loga(2x+b-1)的圖象如圖,則( 。
分析:利用對(duì)數(shù)函數(shù)和函數(shù)圖象平移的方法列出關(guān)于a,b的不等關(guān)系是解決本題的關(guān)鍵.利用好圖形中的標(biāo)注的(0,-1)點(diǎn).利用復(fù)合函數(shù)思想進(jìn)行單調(diào)性的判斷,進(jìn)而判斷出底數(shù)與1的大小關(guān)系.
解答:解:∵函數(shù)f(x)=loga(2x+b-1)是增函數(shù)且隨著x增大,2x+b-1增大,f(x)也增大.
∴a>1,∴0<
1
a
<1,
∵當(dāng)x=0時(shí),f(0)=logab<0,
∴0<b<1.
又∵f(0)=logab>-1=loga
1
a
,
∴b>
1
a
,
∴0<a-1<b<1.
故選D.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的圖象性質(zhì),考查學(xué)生的識(shí)圖能力.考查學(xué)生的數(shù)形結(jié)合能力和等價(jià)轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•宿州三模)函數(shù)f(x)=log 2x-
1
x
的一個(gè)零點(diǎn)落在下列哪個(gè)區(qū)間(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=log(a2-3)(ax+4)在[-1,1]上是單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍是
(-2,-
3
)∪(2,4)
(-2,-
3
)∪(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log(2x-1)
3-2x
的定義域是
(0,1)∪(1,
3
2
)
(0,1)∪(1,
3
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=lo
g
|x+1|
t
在區(qū)間(-2,-1)上恒有f(x)>0,則關(guān)于t的不等式f(8t-1)>f(1)的解集為
(0,
1
3
(0,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lo
g
 
4
x , x>0
4x ,  x≤0
,則滿足f(x)<
1
2
的x取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案