【題目】已知圓的面積為,且與軸、軸分別交于兩點.
(1)求圓的方程;
(2)若直線與線段相交,求實數(shù)的取值范圍;
(3)試討論直線與(1)小題所求圓的交點個數(shù).
【答案】(1) (2)(3)見解析
【解析】試題分析:(1)由,可得,從而可得圓的方程;(2)由(1)可得圓的方程),可求得兩點的坐標(biāo),根據(jù)直線與線段相交,可得到兩點在直線的異側(cè),列不等式求解即可;(3)先求出圓心坐標(biāo)及圓的半徑,根據(jù)圓心到直線的距離等于、大于、小于半徑可確定直線與圓的交點個數(shù).
試題解析:(1)因為圓: ,則圓的半徑,
所以, ,即
所以,圓的方程為.
(2)因為圓的方程為,所以,點、.
由題意,直線:與線段相交,
所以
,解得; ,
所以實數(shù)的取值范圍為.
(3)因為圓心到直線: 的距離,
當(dāng),即或時,直線與圓沒有交點;
當(dāng),即或,直線與圓有一個交點;
當(dāng),即時,直線與圓有兩個交點
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的序號為_______.
①若函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③已知函數(shù)的定義域為,則函數(shù)的定義域是;
④若函數(shù)在上有最小值-4,(,為非零常數(shù)),則函數(shù)在上有最大值6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖南省某自來水公司每個月(記為一個收費周期)對用戶收一次水費,收費標(biāo)準(zhǔn)如下:當(dāng)每戶用水量不超過30噸時,按每噸2元收取;當(dāng)該用戶用水量超過30噸但不超過50噸時,超出部分按每噸3元收。划(dāng)該用戶用水量超過50噸時,超出部分按每噸4元收取。
(1)記某用戶在一個收費周期的用水量為噸,所繳水費為元,寫出關(guān)于的函數(shù)解析式;
(2)在某一個收費周期內(nèi),若甲、乙兩用戶所繳水費的和為214元,且甲、乙兩用戶用水量之比為3:2,試求出甲、乙兩用戶在該收費周期內(nèi)各自的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
當(dāng)時,試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;
若不等式在上恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:若關(guān)于的方程無實數(shù)根,則;命題:若關(guān)于的方程有兩個不相等的正實數(shù)根,則.
(1)寫出命題的否命題,并判斷命題的真假;
(2)判斷命題“且”的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線關(guān)于軸對稱,頂點在坐標(biāo)原點,直線經(jīng)過拋物線的焦點.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過坐標(biāo)原點的直線與拋物線相交于不同的兩點, ,且滿足,證明直線過軸上一定點,并求出點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如下表:
若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達(dá)人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”.已知“網(wǎng)購達(dá)人”與“網(wǎng)購探者”人數(shù)的比例為2:3.
(1)確定的值,并補全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當(dāng)日被評為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點為圓的圓心.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若斜率的直線過拋物線的焦點與拋物線相交于兩點,求弦長.
【答案】(1);(2)8.
【解析】試題分析:(1)先求圓心得焦點,根據(jù)焦點得拋物線方程(2)先根據(jù)點斜式得直線方程,與拋物線聯(lián)立方程組,利用韋達(dá)定理以及弦長公式得弦長.
試題解析:(1)圓的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,
即焦點坐標(biāo)為,得到拋物線的方程:
(2)直線: ,聯(lián)立,得到
弦長
【題型】解答題
【結(jié)束】
19
【題目】已知函數(shù)在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com