m為常數(shù))=________。

答案:0
提示:

由參考分式:分子分母同乘m3x即可。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x3-
1
2
x2+m(m為常數(shù))的圖象上A點(diǎn)處的切線與直線x+y+3=0垂直,則點(diǎn)A的橫坐標(biāo)為( 。
A、
1
2
B、-
1
3
C、
1
2
-
1
3
D、1或
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在坐標(biāo)平面內(nèi),M、N是x軸上關(guān)于原點(diǎn)O對(duì)稱的兩點(diǎn),P是上半平面內(nèi)一點(diǎn),△PMN的面積為
3
2
,點(diǎn)A坐標(biāo)為(1+
3
,
3
2
),
MP
=m•
OA
(m為常數(shù))
,
MN
OP
=|
MN
|

(Ⅰ)求以M、N為焦點(diǎn)且過點(diǎn)P的橢圓方程;
(Ⅱ)過點(diǎn)B(-1,0)的直線l交橢圓于C、D兩點(diǎn),交直線x=-4于點(diǎn)E,點(diǎn)B、E分
CD
的比分別為λ1
、λ2,求證:λ12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m為常數(shù),函數(shù)f(x)=
m-2x1+m•2x
為奇函數(shù).
(1)求m的值;
(2)若m>0,試判斷f(x)的單調(diào)性(不需證明);
(3)若m>0,存在x∈[-2,2],使f(ex+xex-k)+f(2)≤0,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+mx2-m2x+1(m為常數(shù),且m>0)有極大值9,求m的值及f(x)的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin2ax-sinaxcosax(a>0)的圖象與直線y=m(m為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為
π
2
的等差數(shù)列.
(1)求m的值;
(2)若點(diǎn)A(x0,y0)是y=f(x)的圖象的對(duì)稱中心,且x0∈[0,
4
]
,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案