7.如圖,已知矩形ABCD中,AB=2,BC=1,O為線段AB的中點(diǎn),動(dòng)點(diǎn)P從B出發(fā),沿矩形ABCD的邊逆時(shí)針運(yùn)動(dòng),運(yùn)動(dòng)至A點(diǎn)時(shí)終止.設(shè)∠BOP=x,OP=d,將d表示為x的函數(shù)d=f(x).則下列命題中:
①f(x)有最小值1;
②f(x)有最大值$\sqrt{2}$;
③f(x)有3個(gè)極值點(diǎn);
④f(x)有4個(gè)單調(diào)區(qū)間.
其中正確的是( 。
A.①②B.②③C.①②④D.①②③④

分析 可取邊CD的中點(diǎn)為E,這樣根據(jù)函數(shù)單調(diào)性的定義及圖形中x,d的變化關(guān)系便可判斷出函數(shù)d=f(x)有4個(gè)單調(diào)區(qū)間,并可求出該函數(shù)的極值點(diǎn)個(gè)數(shù),以及f(x)的最大、最小值,從而判斷出每個(gè)命題的正誤,從而找出正確選項(xiàng).

解答 解:根據(jù)圖形,P在BC上時(shí),隨著x的增大,d不斷增大,∴此時(shí)d=f(x)遞增;
若取線段CD的中點(diǎn)E,同理得,P從C到E時(shí),d=f(x)遞減,P從而E到D時(shí),d=f(x)遞增,P從D到A時(shí),d=f(x)遞減;
∴函數(shù)d=f(x)有4個(gè)單調(diào)區(qū)間,有三個(gè)極值點(diǎn);
且d=f(x)的最小值為1,最大值$\sqrt{2}$;
∴四個(gè)命題全正確.
故選D.

點(diǎn)評(píng) 考查函數(shù)單調(diào)性的定義,觀察圖形的能力,以及函數(shù)的極值點(diǎn)的定義及求法,函數(shù)最大、最小值的概念及求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若x>0,則$4x+\frac{1}{x}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一圓錐的母線長(zhǎng)度為2,底面半徑為$\sqrt{3}$,以該圓錐的頂點(diǎn)為球心、$\sqrt{3}$為半徑的球的表面與該圓錐的表面的交線長(zhǎng)度為(  )
A.B.C.(3+2$\sqrt{2}$)πD.(3+$\sqrt{3}$)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知x是非零實(shí)數(shù),則“x>1”是“$\frac{1}{x}$<1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)an(n=2,3,4…)是(3+$\sqrt{x}$)n的展開(kāi)式中x的一次項(xiàng)的系數(shù),則$\frac{2016}{2015}$($\frac{3^2}{a_2}$+$\frac{3^3}{a_3}$+…+$\frac{{3^{2016}}}{{a_{2016}}}$)的值是18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖是某幾何體的三視圖,則該幾何體的體積是( 。
A.672B.1120C.1344D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)隨機(jī)變量X服從正態(tài)分布N(2,22),則P(2<X<3)可以表示為(  )
A.1~P(X<1)B.$\frac{1-2P(X<1)}{2}$C.P(0<X<1)D.$\frac{1+2P(X<1)}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖所示,甲從A地由靜止勻加速跑向B地,當(dāng)甲前進(jìn)距離為x1時(shí),乙從距A地x2處的C點(diǎn)由靜止出發(fā),加速度與甲相同,最后二人同時(shí)到達(dá)B地,則AB兩地距離為(  )
A.x1+x2B.$\frac{({x}_{1}+{x}_{2})^{2}}{4{x}_{1}}$
C.$\frac{{x}_{1}^{2}}{4({x}_{1}+{x}_{2})}$D.$\frac{({x}_{1}+{x}_{2})^{2}}{({x}_{1}-{x}_{2}){x}_{1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.等比數(shù)列{an}的公比q=-$\frac{1}{3}$,前4項(xiàng)的和為$\frac{5}{9}$,則a1=$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案