已知等差數(shù)列
的公差大于0,且
是方程
的兩根,數(shù)列
的前n項的和為
,且
(
).
(1) 求數(shù)列
,
的通項公式;
(2) 記
,求證:
.
(1)
(2)利用數(shù)列的單調(diào)性,結合定義法作差法來得到單調(diào)性的證明。
試題分析:解:(Ⅰ)∵
是方程
的兩根,且數(shù)列
的公差
,
∴
,公差
∴
(
) 4分
又當n=1時,有b
1=S
1=1-
當
∴數(shù)列{b
n}是等比數(shù)列,
∴
(
) 8分
(Ⅱ)由(Ⅰ)知
10分
∴
∴
12分
點評:解決的關鍵是能利用等差數(shù)列的概念和等比數(shù)列的通項公式來求解,屬于基礎題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
的前
項和為
,且滿足
(
),
,設
,
.
(1)求證:數(shù)列
是等比數(shù)列;
(2)若
≥
,
,求實數(shù)
的最小值;
(3)當
時,給出一個新數(shù)列
,其中
,設這個新數(shù)列的前
項和為
,若
可以寫成
(
且
)的形式,則稱
為“指數(shù)型和”.問
中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等差數(shù)列
及等比數(shù)列
中,
則當
時有( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
觀察下列三角形數(shù)表:
第六行的最大的數(shù)字是
;設第
行的第二個數(shù)為
的通項公式是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在等差數(shù)列
中
,
,且
,則在
中,
的最大值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
(文科)若
為等差數(shù)列,
是其前n項的和,且
,則
=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在等差數(shù)列
,數(shù)列
的前
項和為
,則在
中最小的負數(shù)為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
各項均為正數(shù)的數(shù)列
前
項和為
,且
.
(1)求數(shù)列
的通項公式;
(2)已知公比為
的等比數(shù)列
滿足
,且存在
滿足
,
,求數(shù)列
的通項公式.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列
的通項公式為
,設其前
項和為
,則使
成立的自然數(shù)
有( )
A.最大值31 | B.最小值31 | C.最大值63 | D.最小值63 |
查看答案和解析>>