【題目】已知
(1)求f(x)的周期及其圖象的對稱中心;
(2)△ABC中,角A、B、C所對的邊分別是a、b、c,滿足(2a﹣c)cosB=bcosC,求f(B)的值.

【答案】
(1)解:∵已知 = sin + cos +1=sin( + )+1,

故f(x)的周期為 =4π.

由sin( + )=0 求得 + =kπ,k∈z,即 x=2kπ﹣ ,故函數(shù)的圖象的對稱中心為(2kπ﹣ ,0)


(2)解:△ABC中,∵(2a﹣c)cosB=bcosC,由正弦定理可得 (2sinA﹣sinC)cosB=sinBcosC,

化簡可得2sinAcosB=sin(B+C)=sinA,∴cosB= ,∴B=

∴f(B)=sin( + )+1= +1


【解析】(1)利用兩角和差的正弦公式、二倍角公式化簡函數(shù)f(x)的解析式為sin( + )+1,由此可得f(x)的周期及其圖象的對稱中心.(2)△ABC中,由(2a﹣c)cosB=bcosC,利用正弦定理化簡可得得2sinAcosB=sin(B+C)=sinA,故有cosB= ,由此求得 B 的值.
【考點精析】掌握兩角和與差的正弦公式和二倍角的正弦公式是解答本題的根本,需要知道兩角和與差的正弦公式:;二倍角的正弦公式:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ACBD中, ,且△ABC為正三角形.

(Ⅰ)求cos∠BAD的值;
(Ⅱ)若CD=4, ,求AB和AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關命題說法正確的是(
A.命題p:“?x∈R,sinx+cosx= ”,則?p是真命題
B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分條件
C.命題“?x∈R,使得x2+x+1<0“的否定是:“?x∈R,x2+x+1<0”
D.“a>l”是“y=logax(a>0且a≠1)在(0,+∞)上為增函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)所學知識完成題目:
(1)求函數(shù)f(x)=2x+4 的值域;
(2)求函數(shù)f(x)= 的值域.
(3)函數(shù)f(x)=x2﹣2x﹣3,x∈(﹣1,4]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系與直角坐標系xoy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程為ρsin2θ=8cosθ. (I)求C的直角坐標方程;
(Ⅱ)設直線l與曲線C交于A,B兩點,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=2|x﹣4|﹣logax+2無零點,則實數(shù)a的取值范圍為;
若函數(shù)f(x)=|2x﹣2|﹣b有兩個零點,則實數(shù)b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷并證明f(x)在(﹣∞,+∞)上的單調性;
(3)若f(k3x)+f(3x﹣9x+1)>0對任意x≥0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)y= 的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程 表示焦點在y軸上的雙曲線,命題q:點(m,1)在橢圓 的內部;命題r:函數(shù)f(m)=log2(m﹣a)的定義域;
(1)若p∧q為真命題,求實數(shù)m的取值范圍;
(2)若p是r的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案