【題目】已知數(shù)列,滿足:對于任意正整數(shù)n,當(dāng)n≥2時,.
(1)若,求的值;
(2)若,,且數(shù)列的各項均為正數(shù).
① 求數(shù)列的通項公式;
② 是否存在,且,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
【答案】(1)84;(2)①();②,理由見解析.
【解析】
(1)在已知數(shù)列遞推公式分別取為,累加可得的值;
(2)① 利用累加法求得,開方后求得數(shù)列的通項公式;
②由數(shù)列的通項公式求出,設(shè),得到,列出不等式組,即可求解.
(1)由題意,因為,且,
可得,,,, ,,各式相加,可得.
(2)由,且,
可得,,,…,.
將上面的式子相加,得,
所以.
因為{an}的各項均為正數(shù),故.
因為也適合上式,所以().
② 假設(shè)存在滿足條件的k ,不妨設(shè),
所以, 平方得,(*)
所以,
所以且,即
由(1)得,,即,
若,代入(*)式,求得不合,舍去;
若,結(jié)合(2)得,
所以,即,又且,
所以的可能取值為2,34,代入(*)式逐一計算,可求得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)設(shè)直線與軸,軸分別交于兩點,點是圓上任一點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點
(1)求證:平面PAB⊥平面CDE;
(2)若AD=CD=2,求點P到平面ADE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6個實數(shù)根(互不相同),則實數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和滿足.
(1)證明數(shù)列為等差數(shù)列,并求出數(shù)列的通項公式.
(2)若不等式,對任意恒成立,求的取值范圍.
(3)記數(shù)列的前項和為,是否存在正整數(shù),使得成立,若存在,求出所有符合條件的有序?qū)崝?shù)對(,);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A.若“”為假命題,則“”為假命題
B.“”是“”的必要不充分條件
C.命題“若,則”的逆否命題為真命題
D.命題“,”的否定是“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合,定義函數(shù)對于兩個集合,定義集合. 已知, .
(Ⅰ)寫出和的值,并用列舉法寫出集合;
(Ⅱ)用表示有限集合所含元素的個數(shù),求的最小值;
(Ⅲ)有多少個集合對,滿足,且?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式|x+1|>|2﹣x|+1的解集為M,且a,b,c∈M.
(1)比較|a﹣b|與|1﹣ab|的大小,并說明理由;
(2)若,求a2+b2+c2的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com