設變量x,y滿足約束條件:
x≥0
2x+y≤3
x+2y≥3
,則z=
x2
2
+y2的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,方程z=
x2
2
+y2為焦點在x軸上的橢圓,利用數(shù)形結合即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
由z=
x2
2
+y2,可知z≥0,
當z不等于零時,對應的曲線為焦點在x軸上的橢圓,
由圖象可知,當z=
x2
2
+y2經過點A(0,3)時,z取得最大值,
此時z=
x2
2
+y2=9,
故答案為:9
點評:本題主要考查線性規(guī)劃的應用,利用橢圓的方程,結合數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示.在△ABC中∠C=90°,∠A的平分線AE交BA上的高CH于D點,過D引AB的平行線交BC于F.求證:BF=EC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知對任意平面向量
AB
=(x,y),把
AB
繞其起點沿逆時針方向旋轉θ角得到向量:
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點B繞點A逆時針方向旋轉θ角得到點P.
(1)已知平面內點A(1,2),點B(-1,2-2
3
),把點B繞點A逆時針方向旋轉
π
3
后得到點P的坐標是
 

(2)設平面內曲線C:y=-
1
2x
上的每一點繞坐標原點沿逆時針方向旋轉
π
4
后得到的點的軌跡方程是:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-5,5]內隨機地取出一個數(shù)a,使得1∈{x|2x-ax-a2>0}的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

汽車從路燈正下方開始向前作變速行駛,汽車影長為l(t)=(t-1)3+t+1(t的單位是秒),則汽車影長變化最快的時刻是第
 
秒.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司有員工49人,其中30歲以上的員工有14人,沒超過30歲的員工有35人,為了解員工的健康情況,用分層抽樣方法抽一個容量為7的樣本,其中30歲以上的員工應抽取
 
人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的圖象如所示,設其定義域為A,值域為C;則對于下列表述:
①A=[-5,6);
②A=[-5,0]∪[2,6);
③C=[0,+∞);
④C=[2,5];
⑤方程f(x)=1的解只有一個;
⑥對于值域C中的每一個y,在A中都有唯一的x與之對應;
正確的有
 
(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l:y=x+1與橢圓C:ax2+y2=2(a>1)交于A、B兩點,若OA⊥OB,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)y=ax2+bx的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習冊答案