【題目】若ax2+bx+c<0的解集為{x|x<-2,或x>4},則對(duì)于函數(shù)f(x)=ax2+bx+c應(yīng)有( )
A.f(5)<f(2)<f(-1)
B.f(5)<f(-1)<f(2)
C.f(-1)<f(2)<f(5)
D.f(2)<f(-1)<f(5)

【答案】B
【解析】若 的解集為{x|x<-2或x>4},則 是方程 的兩根,故 ,且對(duì)稱軸為 ,則只需比較 與對(duì)稱軸距離遠(yuǎn)近即可,距離越遠(yuǎn)函數(shù)值越小,所以
所以答案是:B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解解一元二次不等式的相關(guān)知識(shí),掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為整數(shù)的數(shù)列{an}中,a1=2,且對(duì)任意的n∈N* , 滿足an+1﹣an<2n+ ﹣1,則a2017=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點(diǎn) ,且在( , )上單調(diào),同時(shí)f(x)的圖象向左平移π個(gè)單位之后與原來的圖象重合,當(dāng) ,且x1≠x2時(shí),f(x1)=f(x2),則f(x1+x2)=(  )
A.﹣
B.﹣1
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 在x1處取得極大值,在x2處取得極小值,滿足x1∈(﹣1,0),x2∈(0,1),則 的取值范圍是(  )
A.
B.(0,1)
C.
D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k>0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(Ⅰ)當(dāng)t=4,|AM|=|AN|時(shí),求△AMN的面積;
(Ⅱ)當(dāng)2|AM|=|AN|時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能 與韓國(guó)棋手李世石進(jìn)行最后一輪較量, 獲得本場(chǎng)比賽勝利,最終人機(jī)大戰(zhàn)總比分定格 .人機(jī)大戰(zhàn)也引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有 的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為 。若每次抽取的結(jié)果是相互獨(dú)立的,求 的分布列,期望 和方差 .
附: ,其中 .

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐 中, 平面 , ,底面 是梯形, ,

(1)求證:平面 平面
(2)設(shè) 為棱 上一點(diǎn), ,試確定 的值使得二面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若 、 是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為( )
①若直線 ,則在平面 內(nèi)一定不存在與直線 平行的直線.
②若直線 ,則在平面 內(nèi)一定存在無數(shù)條直線與直線 垂直.
③若直線 ,則在平面 內(nèi)不一定存在與直線 垂直的直線.
④若直線 ,則在平面 內(nèi)一定存在與直線 垂直的直線.
A.①③
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有最大值 ,且 的導(dǎo)數(shù).
(Ⅰ)求 的值;
(Ⅱ)證明:當(dāng) , 時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案