分析 根據(jù)題意和韋達(dá)定理列出方程組,由平方關(guān)系化簡聯(lián)立列方程,求出k的值,最后要驗證三角函數(shù)值的范圍,即可求k,α.
解答 解:∵sinα和cosα是方程x2-kx+k+1=0的兩根,
∴sinα+cosα=k,sinαcosα=k+1,
①平方得,1+2sinαcosα=k2,將②代入得,
k2-2k-3=0,解得k=3或-1,
當(dāng)k=3時,sinαcosα=4,這與sinαcosα<1矛盾,故舍去,
當(dāng)k=-1時,經(jīng)驗證符合條件.
∴sinα+cosα=-1,sinαcosα=0,
∵π<α<2π,
∴α=$\frac{3π}{2}$.
∴α+k=$\frac{3π}{2}$-1.
故答案是:$\frac{3π}{2}$-1.
點評 本題考查了韋達(dá)定理(根與系數(shù)的關(guān)系),以及平方關(guān)系的靈活應(yīng)用,主要驗證三角函數(shù)值的范圍.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥α,m∥β,則α∥β | B. | 若m∥α,α∥β,則m∥β | C. | 若m?α,m⊥β,則α⊥β | D. | 若m?α,α⊥β,則m⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
幾何證明選講 | 坐標(biāo)系與參數(shù)方程 | 不等式選講 | 合計 | |
男同學(xué) | 12 | 4 | 6 | 22 |
女同學(xué) | 0 | 8 | 12 | 20 |
合計 | 12 | 12 | 18 | 42 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{3}{5}$,+∞) | B. | ($\frac{2}{5}$,+∞) | C. | [$\frac{2}{5}$,$\frac{3}{5}$] | D. | ($\frac{2}{5}$,$\frac{3}{5}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com