已知集合M={-1,1},N={x|
1
4
2x-1<2,x∈Z}
,則M∩N=( 。
分析:將集合N中的不等式變形,利用指數(shù)函數(shù)的性質求出解集,找出解集中的整數(shù)解確定出N,再由M,求出兩集合的交集即可.
解答:解:由N中的不等式變形得:2-2<2x-1<21,x∈Z,得到-2<x-1<1,即-1<x<2,
∴N={0,1},
∵M={-1,1},
∴M∩N={1},
故選C
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

1、已知集合M={1,2,3,5},集合N={3,4,5},則M∩N=
{3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,1,3,5}和N={-1,1,2,4}.設關于x的二次函數(shù)f(x)=ax2-4bx+1(a,b∈R).
(Ⅰ)若b=1時,從集合M取一個數(shù)作為a的值,求方程f(x)=0有解的概率;
(Ⅱ)若從集合M和N中各取一個數(shù)作為a和b的值,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={-1,0,1,2},從集合M中有放回地任取兩元素作為點P的坐標.
(1)寫出這個試驗的所有基本事件,并求出基本事件的個數(shù);
(2)求點P落在坐標軸上的概率;
(3)求點P落在圓x2+y2=4內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•邯鄲二模)已知集合M⊆{1,2,3,4},且M∩{1,2}={1,2},則集合M的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案