【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點(diǎn)點(diǎn)N在線段AD上.
(1)點(diǎn)N為線段AD的中點(diǎn)時,求證:直線PA∥面BMN;
(2)若直線MN與平面PBC所成角的正弦值為,求二面角C﹣BM﹣N所成角θ的余弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)連結(jié)點(diǎn),,交于點(diǎn),連結(jié),推導(dǎo)出四邊形為正方形,由此能證明直線平面;(2)分別以,,為,,軸,建立空間直角坐標(biāo)系,由此能求出二面角C-BM-N所成角的余弦值.
證明:(1)連結(jié)點(diǎn)AC,BN,交于點(diǎn)E,連結(jié)ME,
∵點(diǎn)N為線段AD的中點(diǎn),AD=4,
∴AN=2,∵∠ABC=∠BAD=90°,AB=BC=2,
∴四邊形ABCN為正方形,∴E為AC的中點(diǎn),
∴ME∥PA,
∵PA平面BMN,∴直線PA∥平面BMN.
(2)∵PA⊥平面ABCD,且AB,AD平面ABCD,
∴PA⊥AB,PA⊥AD,
∵∠BAD=90°,∴PA,AB,AD兩兩互相垂直,
分別以AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系,
則由AD=AP=4,AB=BC=2,得:
B(2,0,0),C(2,2,0),P(0,0,4),
∵M為PC的中點(diǎn),∴M(1,1,2),
設(shè)AN=λ,則N(0,λ,0),(0≤λ≤4),則=(﹣1,λ﹣1,﹣2),
=(0,2,0),=(2,0,﹣4),
設(shè)平面PBC的法向量為=(x,y,z),
∵直線MN與平面PBC所成角的正弦值為,==.
解得λ=1,則N(0,1,0),=(﹣2,1,0),=(﹣1,1,2),
設(shè)平面BMN的法向量=(x,y,z),
=﹣x+y+2z=0,=﹣2x+y=0,
令x=2,得=(2,4,﹣1),
cos=
∴二面角C-BM-N所成角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:=1(a>b>0)的兩個焦點(diǎn)以及兩個頂點(diǎn),且點(diǎn)(b,)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且|MN|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓上一點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為, 為其右焦點(diǎn),若,設(shè),且,則該橢圓離心率的最大值為( )
A. B. C. D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),兩焦點(diǎn)分別為雙曲線的頂點(diǎn),直線與橢圓交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為,點(diǎn)Р是橢圓上異于A,B的任意一點(diǎn),點(diǎn)Q滿足,,且A,B,Q三點(diǎn)不共線.
(1)求橢圓的方程;
(2)求點(diǎn)Q的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)和,設(shè),,若存在,使得,則稱與互為“零點(diǎn)相鄰函數(shù)”.若函數(shù)與互為“零點(diǎn)相鄰函數(shù)”,則實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了至月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
晝夜溫差 | ||||||
就診人數(shù)(個) | 16 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是月與月的兩組數(shù)據(jù),請根據(jù)至月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B分別為雙曲線 (a>0,b>0)的左、右頂點(diǎn),雙曲線的實(shí)軸長為4,焦點(diǎn)到漸近線的距離為.
(1)求雙曲線的方程;
(2)已知直線y=x-2與雙曲線的右支交于M,N兩點(diǎn),且在雙曲線的右支上存在點(diǎn)D,使,求t的值及點(diǎn)D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com