【題目】已知 ,動點滿足.設(shè)動點的軌跡為.

(1)求動點的軌跡方程,并說明軌跡是什么圖形;

(2)求動點與定點連線的斜率的最小值;

(3)設(shè)直線交軌跡兩點,是否存在以線段為直徑的圓經(jīng)過?若存在,求出實數(shù)的值;若不存在,說明理由.

【答案】(1)軌跡是以為圓心,2為半徑的圓;(2);(3).

【解析】試題分析:(1)由直接法,設(shè)出點坐標(biāo)列方程即可;

(2)由直線與圓有公共點可得,即可解得;

(3)根據(jù)題意有,坐標(biāo)化可得,進(jìn)而直線和圓聯(lián)立,由韋達(dá)定理代入求解即可.

試題解析:

(1)

化簡可得: ,軌跡是以為圓心,2為半徑的圓

(2)設(shè)過點的直線為,圓心到直線的距離為

(3)假設(shè)存在,聯(lián)立方程,得,

設(shè),則 ,

,∴

,得

且滿足,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的定義域為集合A,y=﹣x2+2x+2a的值域為B.
(1)若a=2,求A∩B
(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|(x+2)(x﹣5)>0},B={x|m≤x<m+1},且BRA),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十二屆全國人民代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)將分別201735日和3月3日在北京開幕.全國兩會召開前夕,網(wǎng)推出兩會熱點大型調(diào)查,調(diào)查數(shù)據(jù)表明,民生問題是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與者中隨機(jī)選出200人,并將這200人按年齡分組:第,第,第,第,第,得到的頻率分布直方圖如圖所示:

(1)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取12人,再從這12人中隨機(jī)抽取3人贈送禮品,求抽取的3人中至少有人年齡在第3組的概率;

(2)所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,記關(guān)注民生問題的人數(shù)為X,求X的分布列與期望;

(3)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中關(guān)注民生問題的人中老年人有10人,問是否有的把握認(rèn)為是否關(guān)注民生問題與年齡有關(guān)?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)= 的定義域為[﹣a﹣2,b]
(1)求實數(shù)a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義給出證明;
(3)若實數(shù)m滿足f(m﹣1)<f(1﹣2m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,焦點

(1)當(dāng)時,若是橢圓第一象限內(nèi)的一點,,求點的坐標(biāo);

(2)當(dāng)橢圓焦點在軸上且焦距2時,若直線與橢圓相交于兩點,且,證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓 軸的正半軸交于點,以為圓心的圓 )與圓交于, 兩點.

(1)若直線與圓切于第一象限,且與坐標(biāo)軸交于, ,當(dāng)直線長最小時,求直線的方程;

(2)設(shè)是圓上異于, 的任意一點,直線、分別與軸交于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案