【題目】已知, ,動點滿足.設(shè)動點的軌跡為.
(1)求動點的軌跡方程,并說明軌跡是什么圖形;
(2)求動點與定點連線的斜率的最小值;
(3)設(shè)直線交軌跡于兩點,是否存在以線段為直徑的圓經(jīng)過?若存在,求出實數(shù)的值;若不存在,說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的定義域為集合A,y=﹣x2+2x+2a的值域為B.
(1)若a=2,求A∩B
(2)若A∪B=R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|(x+2)(x﹣5)>0},B={x|m≤x<m+1},且B(RA),則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十二屆全國人民代表大會第五次會議和政協(xié)第十二屆全國委員會第五次會議(簡稱兩會)將分別于2017年3月5日和3月3日在北京開幕.全國兩會召開前夕,某網(wǎng)站推出兩會熱點大型調(diào)查,調(diào)查數(shù)據(jù)表明,民生問題是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與者中隨機(jī)選出200人,并將這200人按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示:
(1)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取12人,再從這12人中隨機(jī)抽取3人贈送禮品,求抽取的3人中至少有人年齡在第3組的概率;
(2)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,記關(guān)注民生問題的人數(shù)為X,求X的分布列與期望;
(3)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中不關(guān)注民生問題的人中老年人有10人,問是否有的把握認(rèn)為是否關(guān)注民生問題與年齡有關(guān)?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)= 的定義域為[﹣a﹣2,b]
(1)求實數(shù)a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義給出證明;
(3)若實數(shù)m滿足f(m﹣1)<f(1﹣2m),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓:的左,右焦點.
(1)當(dāng)時,若是橢圓上在第一象限內(nèi)的一點,且,求點的坐標(biāo);
(2)當(dāng)橢圓的焦點在軸上且焦距為2時,若直線:與橢圓相交于兩點,且,求證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓: 與軸的正半軸交于點,以為圓心的圓: ()與圓交于, 兩點.
(1)若直線與圓切于第一象限,且與坐標(biāo)軸交于, ,當(dāng)直線長最小時,求直線的方程;
(2)設(shè)是圓上異于, 的任意一點,直線、分別與軸交于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com