【題目】命題p:函數(shù)y=log2(x2﹣2x)的單調(diào)增區(qū)間是[1,+∞),命題q:函數(shù)y=的值域?yàn)椋?,1),下列命題是真命題的為( 。
A.p∧q
B.p∨q
C.p∧(¬q)
D.¬q

【答案】B
【解析】解:令t=x2﹣2x,則函數(shù)y=log2(x2﹣2x)化為y=log2t,
由x2﹣2x>0,得:x<0或x>2,
所以,函數(shù)y=log2(x2﹣2x)的定義域?yàn)椋ī仭蓿?)∪(2,+∞).
函數(shù)t=x2﹣2x的圖象是開(kāi)口向上的拋物線,且對(duì)稱軸方程為x=1,
所以,函數(shù)t=x2﹣2x在定義域內(nèi)的增區(qū)間為(2,+∞).
又因?yàn)楹瘮?shù)為y=log2t是增函數(shù),所以,復(fù)合函數(shù)y=log2(x2﹣2x)的單調(diào)增區(qū)間是(2,+∞).
所以,命題p為假命題;
再由3x>0,得3x+1>1,
所以,
所以,函數(shù)y=的值域?yàn)椋?,1),
故命題q為真命題.
所以p∧q為假命題,pVq為真命題,p∧(¬q)為假命題,¬q為假命題.
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識(shí),掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為, ,點(diǎn)在橢圓.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( 。
A.(,
B.(,3)
C.( , 1)
D.( , 1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= , SA=SC=2,二面角S﹣AC﹣B的余弦值是 , 若S、A、B、C都在同一球面上,則該球的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn),直線,點(diǎn)在直線上移動(dòng), 是線段軸的交點(diǎn), .

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)直線軸相交于點(diǎn),過(guò)的直線交軌跡兩點(diǎn),

試探究點(diǎn)與以為直徑的圓的位置關(guān)系,并加以說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知指數(shù)函數(shù)y=ax在[0,1]上的最大值與最小值的差為 ,則實(shí)數(shù)a的值為( )
A.
B.
C.

D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=a+ 為定義在R上的奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)在(﹣∞,+∞)的單調(diào)性并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1),函數(shù)g(x)=loga(4﹣2x)(a>0,且a≠1).
(1)求函數(shù)y=f(x)﹣g(x)的定義域;
(2)求使函數(shù)y=f(x)﹣g(x)的值為正數(shù)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EP交圓于E,C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且PG=PD,連結(jié)DG并延長(zhǎng)交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.

(Ⅰ)求證:AB為圓的直徑;

(Ⅱ)若AC=BD,求證:AB=ED.

查看答案和解析>>

同步練習(xí)冊(cè)答案